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We examine the information content of option and equity volumes when trade

direction is unobserved. In a multimarket asymmetric information model, equity

short-sale costs result in a negative relation between relative option volume and future

firm value. In our empirical tests, firms in the lowest decile of the option to stock

volume ratio (O/S) outperform the highest decile by 0.34% per week (19.3% annualized).

Our model and empirics both indicate that O/S is a stronger signal when short-sale costs

are high or option leverage is low. O/S also predicts future firm-specific earnings news,

consistent with O/S reflecting private information.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In recent decades, the availability of derivative secu-
rities has rapidly expanded. This expansion is not limited
to equity options and now includes a vast array of
securities ranging from currency options to credit default
swaps. Derivatives contribute to price discovery because
they allow traders to better align their strategies with the
sign and magnitude of their information. The leverage
in derivative securities, combined with this alignment,
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creates additional incentives to generate private informa-
tion. In this way, trades in derivative markets may provide
more refined and precise signals of the underlying asset’s
value than trades of the asset itself. Understanding how
and why derivatives affect price discovery is therefore
vital to understanding how information comes to be in
asset prices.

This study focuses on the information content of
trading volumes. Observed transactions play an important
role in price discovery because order flow imbalances can
reflect the sign and magnitude of private information.
While market makers can observe these imbalances, most
outside observers cannot, which makes the problem of
inferring private information more complex. Techniques
to empirically estimate order flow imbalances are com-
putationally intensive, typically requiring the pairing of
intraday trades and quotes. This problem is exacerbated
when agents have access to multiple trading venues
because the mapping between transactions and private
information becomes more difficult to identify. In this
paper, we address the inference problem of the outside
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observer by examining the information content of option
and equity volumes when agents are privately informed
but trade direction is unobserved.

We provide theoretical and empirical evidence that
informed traders’ private information is reflected in O/S,
the ratio of total option market volume (aggregated across
calls and puts) to total equity market volume. The O/S
measure was first coined and studied by Roll, Schwartz,
and Subrahmanyam (2010), whose findings suggest that
cross-sectional and time-series variation in O/S could be
driven by informed trade. As a natural extension of these
findings, we examine the relation between O/S and future
returns. Empirically, we find that contrasting publicly
available totals of firm-specific option and equity volume
portends directional prices changes, in particular that low
O/S firms outperform the market while high O/S firms
underperform. At the end of each week, we sort firms by
O/S and compute the average return of a portfolio consist-
ing of a short position in stocks with high O/S and a long
position in stocks with low O/S. This portfolio provides an
average risk-adjusted hedge return of 0.34% in the week
following the formation date (19.3% annualized).

If option volume is concentrated among risky firms
with higher return volatility, one might anticipate the
opposite result, namely that firms with higher O/S earn
higher future returns. While our finding is inconsistent
with this risk-based explanation, we take several steps to
mitigate concerns that exposure to other forms of risk
(liquidity risk, for example) explains the O/S-return
relation. First, we show that the relation holds after
controlling for exposure to the three Fama-French and
momentum factors. Second, we show that the predictive
power of O/S for future returns is relatively short-lived.
Strategy returns rapidly decline from 0.34% in the first
week following portfolio formation and become statisti-
cally insignificant beyond the sixth week. Third, to miti-
gate concerns that our results are driven by static firm
characteristics correlated with O/S and expected returns,
we show that two measures of within-firm changes in O/S
also predict future returns.

We argue that the negative relation between O/S and
future returns is driven by short-sale costs in equity
markets, which make option markets an attractive venue
for traders with negative news. Motivated by this story,
we model the capital allocation decision of privately
informed traders who can trade in option and equity
markets. Equity short-sale costs lead informed agents
to trade options more frequently for negative signals
than positive ones, thus predicting a negative relation
between relative option volume and future equity
value. An important innovation of our paper is that this
relation does not require classifying trades as being
buyer- versus seller-initiated. Instead, our theoretical
predictions and empirical tests rely on publicly available
volume totals.

Having established the negative cross-sectional rela-
tion between O/S and future returns, we next test our
model’s prediction that this relation is stronger when
short-sale costs are high. As short-sale costs increase,
informed traders are more likely to switch from equities
to options for negative signals, which strengthens the
O/S-return relation. We test this prediction using three
different measures of short-sale costs. The first measure is
derived from institutional ownership, as in Nagel (2005),
and is available throughout our 1996–2010 sample win-
dow. We also use two direct measures of short-sale costs,
transacted loan fees and available loan supply, from a
proprietary database of institutional lending that is avail-
able on a monthly basis from 2002 through 2009. Across
all three measures, we find that portfolio alphas asso-
ciated with O/S are generally increasing in the cost of
shorting, though the statistical significance of this pattern
is mixed.

An additional empirical prediction arising from our
model is that the O/S-return relation is weaker when
option leverage is high. As option leverage increases, bid–
ask spreads in options markets increase, which weakens
the O/S-return relation because the bid–ask spread acts
like a switching cost for traders considering the use of
options to avoid short-sale costs. When option market
bid–ask spreads are larger, fewer traders switch from
equities to options for negative signals, and the O/S-
return relation is therefore weaker. Empirically, we find
that portfolio alphas associated with O/S are monotoni-
cally decreasing in option leverage.

It may be initially puzzling why we do not find a
relation between the ratio of call to put volume and future
returns. Our model demonstrates that O/S provides a
clearer signal of private information than the ratio of call
to put volume because call volume could be good news
(if informed traders are buying) or bad news (if informed
traders are selling), and put volume is similarly ambig-
uous. Thus, in the absence of information about the sign
of each trade (i.e., buy vs. sell), O/S is an indication of the
sign of private information while the ratio of call to put
volume is not. Our model does, however, predict a
positive relation between call–put volume differences
and future return skewness because informed traders
buy calls (puts) for extremely good (bad) news and sell
calls (puts) for moderately bad (good) news. Consistent
with this prediction, we show empirically that the ratio of
call volume to put volume predicts return skewness in the
subsequent week.

We also find that O/S predicts the sign and magnitude
of earnings surprises, standardized unexplained earnings,
and abnormal returns at quarterly earnings announce-
ments in the following week. These tests show that the
same O/S measure we use to predict weekly returns also
contains information about future earnings announce-
ments that occur in the subsequent week. This is consis-
tent with O/S reflecting private information that is
incorporated into equity prices following a subsequent
public disclosure of the news.

The rest of the paper is organized as follows. We begin
in Section 2 by discussing our results in the context of
existing literature. We model the multimarket price dis-
covery process and formalize the equilibrium strategy of
informed traders in Section 3. In Section 4, we describe
the data, methodology, empirical results, and robustness
checks. Finally, we present results pertaining to quarterly
earnings announcements in Section 5 and conclude in
Section 6.
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2. Relation to literature

The two immediate antecedents of our work are
Easley, O’Hara, and Srinivas (1998), hereafter referred to
as EOS, and Roll, Schwartz, and Subrahmanyam (2010),
hereafter RSS. EOS contains a multimarket equilibrium
model wherein privately informed traders are allowed to
trade in both option and equity markets.1 The EOS model
highlights conditions under which informed traders
transact in both option and equity markets, and predicts
that directional option volume signals private information
not yet reflected in equity prices. Specifically, their model
predicts that positive trades (i.e., buying calls and selling
puts) are positive signals of equity value and that negative
trades (i.e., selling calls and buying puts) are negative
signals of equity value. An interesting but otherwise
unexplored empirical finding in EOS is that negative
option market activity carries greater predictive power
for future price changes. EOS comment on this finding in
the following excerpt:

An interesting feature of our results is the asymmetry
between the negative- and positive-position effects y

suggesting that options markets may be relatively
more attractive venues for traders acting on ‘‘bad’’
news. An often-conjectured role for options markets is
to provide a means of avoiding short-sales constraints
in equity markets y Our results support this conjec-
ture, suggesting a greater complexity to the mechan-
ism through which negative information is impounded
into stock prices [p. 458].

We provide a formal means of understanding their
finding by introducing short-sale costs into a microstruc-
ture framework with asymmetric information. Like EOS,
informed agents trade with a risk-neutral market maker,
and can buy or sell shares of stock, buy or sell calls, or buy
or sell puts. Unlike EOS, we impose short-sale costs that
play a central role in determining which assets informed
traders choose to trade. It is comparatively cheaper to
capitalize on bearish private signals in option markets
because traders can buy puts or sell calls, and in both
cases they can create new option contracts without first
borrowing them from a third party. In our model’s
equilibrium, the costs associated with short-selling make
informed traders more likely to use options for bad
signals than for good ones and, as a result, high O/S
indicates negative private information and low O/S indi-
cates positive private information.

Like EOS, we solve a static model and therefore need
the additional assumption that some friction prevents
equity prices from immediately reflecting the information
in option volumes in order for the model’s prediction
about the conditional mean equity value to translate into
return predictability. Our main empirical prediction, that
O/S is a negative cross-sectional signal of future returns,
1 The authors point out that asymmetric information violates the

assumptions underlying complete markets and, therefore, the option

trading process is not redundant. Consistent with this idea, Bakshi, Cao,

and Chen (2000) find that Standard & Poors (S&P) 500 call options

frequently move in the opposite direction of equity prices.
differs from EOS in that it can be tested empirically
without signing the direction of trades. We predict and
confirm that contrasting publicly available totals of firm-
specific option and equity volume portends directional
price changes.

Empirically, our study of the relation between O/S and
future returns is a natural extension of the work in RSS,
which introduces the option to stock volume ratio, and
coins it O/S. The authors find substantial intertemporal
and cross-sectional variation in O/S, and explain a sig-
nificant part of this variation in a regression framework.
In particular, O/S is increasing in firm size and implied
volatility but decreasing in option bid–ask spreads and
institutional holdings. Our results shed additional light on
the variation in O/S by examining the theoretical deter-
minants of relative option volume when a subset of
market participants is privately informed, and the empiri-
cal relation between O/S and future returns. RSS also
show that O/S in the days immediately prior to announce-
ment predicts the magnitude of returns at earnings
announcements, consistent with O/S reflecting traders’
private information. Conditional on there being positive
(negative) earnings news, they find that O/S predicts
higher (lower) announcement returns (see Section 5 for
more details). Our analysis builds upon this finding by
demonstrating an unconditional predictive relation
between the prior week’s O/S and earnings surprises.

Another recent paper examining option volume is Roll,
Schwartz, and Subrahmanyam (2009), which shows a
positive cross-sectional relation between Tobin’s q and
unscaled option volume. The authors interpret this as
evidence that liquid option markets increase firm value
because they help complete markets and generate
informed trade. Our model and empirical tests support
this intuition by demonstrating that option markets are
an attractive venue for informed traders.

The results of this paper also relate to the literature on
price discovery and information flow in multiple mar-
kets.2 Pan and Poteshman (2006) use proprietary Chicago
Board Options Exchange (CBOE) option market data and
provide strong evidence of informed trading in option
markets. The authors find that sorting stocks by the
amount of newly initiated positions in puts relative to
calls foreshadows future returns but they conclude the
predictability is not due to market inefficiencies and
instead reflects the fact that their volume measure is
not publicly observable. A key innovation of our paper is
demonstrating that publicly available, non-directional
volume totals predict future returns. Similarly, Cremers
and Weinbaum (2010) and Zhang, Zhao, and Xing (2010)
find that publicly available asymmetries in implied
volatility across calls and puts predict future returns.

Prior research establishes that equity volume, the
denominator of our primary return predictor O/S, is useful
2 Whether option markets lead equity markets or vice versa remains

an open question. Anthony (1988) examines the interrelation of stock

and option volumes and finds that call-option activity predicts volume

in the underlying equity with a one-day lag. Similar findings are

reported in Manaster and Rendleman (1982). In contrast, Stephan and

Whaley (1990) find no evidence that options lead equities.



3 Allowing trades in bundles of multiple assets (for example, one call

and two shares) complicates the analysis without changing our results

or providing additional insight. Bundles serve as ‘‘intermediate’’ portfo-

lios used by the informed trader upon receiving a signal near their

indifference point between the two bundled assets. As long as bundle

trades that include a short position in equities require traders to pay

short-sale costs, our model still predicts that equity (option) volume

reflects positive (negative) private information.
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by itself in predicting future returns, though the direction
depends on the way volume is measured (see, e.g., Gervais,
Kaniel, and Mingelgren, 2001; Lee and Swaminathan, 2000;
Brennan, Chordia, and Subrahmanyam, 1998). We decouple
O/S into separate measures of equity and option volume and
show that past option volume is negatively related to future
returns incremental to past equity volume. Other extant
work uses equity volume as a conditioning variable for
examining the relation between past and future returns.
Specifically, Lee and Swaminathan (2000) show that high
(low) volume winners (losers) experience faster momentum
reversals, and Llorente, Michaely, Saar, and Wang (2002)
show that the relation between equity volume and return
autocorrelation changes sign depending on the amount of
informed trading for a given equity.

During the 2008 financial crisis, the U.S. Securities and
Exchange Commission (SEC) banned short sales for 797
‘‘financial’’ stocks, providing an interesting case study of
the impact of short-sale costs on options markets. Both
Battalio and Schultz (2011) and Grundy, Lim, and
Verwijmeren (in press) find that option market spreads
increased and option market volume decreased for firms
subject to the ban relative to those exempt from it. A key
component of our model is that option markets serve as
an alternative venue for negative news when shorting is
costly, and at first glance, the 2008 episode contradicts
this premise. However, as emphasized in Battalio and
Schultz (2011), the short-sale ban also imposed costs on
option market makers who short equity, making it more
difficult for them to hedge when selling puts or buying
calls. In our model, increasing costs for market makers
who write puts or buy calls will increase spreads and
decrease volume in option markets, while banning shorts
will increase both spreads and volume in options markets.
Our model therefore suggests we interpret the decrease in
option market volume during the 2008 ban as a result of
the added costs of shorting for market makers outweigh-
ing the relocation of trades stemming from negative
information to option markets.

In modelling the relation between short-sale costs and
informed trading, our paper is also related to Diamond
and Verrecchia (1987), which models the impact of short-
sale constraints on the speed of adjustment of security
prices to private information when informed traders only
have access to equity markets. In their model, short-sale
constraints cause some informed parties with negative
information not to trade. Thus, the absence of trade in
their model is a negative signal of future firm value. In our
model, trading options is an alternative to abstaining from
trade when the cost of shorting is high. As a result, a high
option volume ratio, rather than the absence of trade,
reflects negative private information.

3. The model

We present a model of informed trading in both equity
and options markets in the presence of short-sale costs.
Informed traders build a portfolio by trading sequentially
with a competitive, risk-neutral market maker. A key
feature of our model is that traders must pay a lending
fee to a third party when shorting stock. Because it is
costly to trade on bad news in the stock market, in
equilibrium the mean equity value conditional on an
option trade is lower than the mean equity value condi-
tional on a stock trade.

There are three tradable assets in the model: an equity,
a call option, and a put option. The stock liquidates for ~V
at time t¼2 in the future. The value of ~V is unknown prior
to t¼2, but it is common knowledge that

~V ¼ mþ ~Eþ ~Z, ð1Þ

where m is the exogenous mean equity value, and ~E and ~Z
are independent, normally distributed shocks with zero
mean and variances s2

E and s2
Z. The call and put are both

struck at m, and both expire at time t¼2. We focus on the
case of European options with a single strike price
because our aim is to model the choice between trading
options and trading equities, as opposed to the choice
amongst options of different strikes or times to expira-
tion. We use m as a strike price so that calls and puts have
the same leverage.

Trade occurs at time t¼1, at which point a fraction a of
the traders (henceforth ‘‘informed traders’’) know the
realization of ~E but the remaining traders, and the market
maker, do not. The distribution of ~V conditional on the
information that ~E ¼ E is

~V 9ð~E ¼ EÞ �NðmþE,s2
ZÞ: ð2Þ

Informed traders are risk-neutral, and therefore value the
stock, call, and put using

Eð ~V 9~E ¼ EÞ ¼ mþE, ð3Þ

Eð ~C9~E ¼ EÞ ¼F
E
sZ

� �
Eþf E

sZ

� �
sZ, ð4Þ

Eð ~P9~E ¼ EÞ ¼ �F �E
sZ

� �
Eþf E

sZ

� �
sZ, ð5Þ

respectively, where F is the standard normal’s cumulative
distribution function, f is its probability distribution
function, and ~C and ~P are the values of the call and put
at t¼2.

We require that each trade be in exactly one type of
asset, resulting in six possible trades: buy or sell stock,
buy or sell calls, and buy or sell puts. At equilibrium
prices, the informed traders have a strict preference
among the assets for all signals other than six cutoff
points.3 A fraction 1�a of the traders are uninformed and
trade for reasons outside the model, possibly a desire for
liquidity, the need to hedge other investments or human
capital, or a false belief that they have information.
Regardless of their motivation, uninformed traders choose
among the same possible transactions as the informed
traders, with fractions q1, q2, q3, q4, q5, and q6 choosing to
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buy stock, sell stock, buy calls, sell calls, buy puts, and sell
puts, respectively, where

P6
i ¼ 1 qi ¼ 1.

A competitive and risk-neutral market maker posts bid
and ask prices for all three assets that result in zero
expected profit for each trade.4 For notation, we write
as, bs, ac, bc, ap, and bp for the ask and bid prices of the
stock, call, and put, respectively. As in EOS and Glosten
and Milgrom (1985), trades occur sequentially and at
fixed order sizes: g shares of stock and y options con-
tracts. Unlike EOS, we assume throughout that y42g so
that options trades allow more exposure to the under-
lying than stock trades, an intuition expressed in Black
(1975) as well as EOS and RSS (see Appendix B for details).

A critical new ingredient in our model is a short-sale
cost paid by the trader to a third party who lends them
the shares. The fee is a fraction r40 of the total amount
shorted gbs. The lender is able to charge such a fee
because they have some market power, or because there
is some counterparty risk. No such fee exists when
writing options because there is no need to find a contract
to borrow—the market maker can create a new contract.
The parameter r can also represent a reduced form of any
cost to shorting stock; for example, recall risk or the
indirect costs described in Nagel (2005). Regardless of r’s
interpretation, the market maker pays gbs for g shares, but
the trader only nets gbsð1�rÞ from the transaction.5

3.1. Equilibrium

An equilibrium in our model consists of an optimal
trading strategy for informed traders as a function of their
signal, and bid–ask prices and quantities that yield zero
expected profit for the market maker. In equilibrium,
informed traders use the following cutoff strategy f ðEÞ
that maps the range of possible signals to the space of
possible trades:

f ðEÞ ¼

buy puts for Erk1,

sell stock for E 2 ðk1,k2�,

sell calls for E 2 ðk2,k3�,

make no trade for E 2 ðk3,k4�,

sell puts for E 2 ðk4,k5�,

buy stock for E 2 ðk5,k6�,

buy calls for E4k6:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

For extremely good or bad signals, informed traders
buy options despite large bid–ask spreads in these mar-
kets because they provide greater leverage. The bid–ask
spreads make options unattractive for weaker signals, and
so informed traders trade equities instead. For even
weaker good or bad signals, however, informed traders
4 In the model, additional market makers have no impact as long as

they are risk-neutral and competitive. The return predictability evidence

in this paper suggests there is some segmentation between option and

equity markets, perhaps because they have different market makers.
5 It is important for our argument that option market makers do not

pay the short-sale cost r in the course of hedging their position, and

therefore embed the short-sale cost in option prices. In reality, option

market makers have access to cheaper shorting than ordinary investors,

and therefore the option-embedded short-sale cost is smaller than the

actual short-sale cost in equity markets.
value the stock near its unconditional mean and therefore
cannot profitably trade stock. However, they value the
options well below their unconditional mean because
extreme outcomes occur with lower probabilities, and
therefore sell options. If bid prices are below informed
traders’ valuation of both a put and a call for a given
signal, informed traders choose not to trade. The cutoff
points ki arise endogenously in equilibrium and are
chosen so that informed traders strictly prefer writing
puts for all Eok1, selling stock for all k1oEok2, etc.
Some regions can be empty in equilibrium, meaning
ki ¼ kiþ1 for some i. The addition of short-sale costs
shrinks the region of signals for which informed traders
short stock ðk1,k2�.

The bid and ask prices for each asset (as, bs, ac, bc, ap,
and bp) and the informed traders’ cutoff points ki are the
12 equilibrium parameters. Together they satisfy 12
equations, presented fully in Appendix A, which assure
that the market maker’s expected profit is zero for each
trade and that informed traders are indifferent between
the two relevant trades at each cutoff point.

3.2. Results and empirical predictions

Due to the nonlinearity of the simultaneous equations,
no closed-form solution for the equilibrium parameters is
available. We derive our results and empirical predictions
from the simultaneous equations. Our focus is on the
information content of trading volumes when there are
short-sale costs, so we assume throughout that r40.
Proofs are in Appendix C.

Result 1. When each asset is equally likely to be bought or

sold by an uninformed trader, the stock is worth less

conditional on an option trade than it is conditional on a

stock trade.

Empirical Prediction 1. Option volume, scaled by volume in

the underlying equity, is negatively related to future stock

returns.

The main result is that an option trade is bad news for
the value of the stock and a stock trade is good news,
which differs from EOS in that the conditioning variable is
the location of trade rather than the direction of trade.
Option volume reflects bad news because informed tra-
ders use stocks more frequently to trade on good news
than bad due to the short-sale cost. Therefore, the
expected equity value conditional on an option trade is
lower than the unconditional mean, which is in turn
lower than the expectation conditional on a stock trade.
Result 1 requires that uninformed traders buy and sell
each asset with equal probability, but holds regardless of
how uninformed traders distribute their demand across
the different assets; for example, uninformed traders may
trade equities more frequently than options.

To translate Result 1 into an empirical prediction, we
consider the implications of our static model in a multi-
period setting. If equity markets fully incorporate the
information revealed through options trading into their
valuations, stock prices will immediately reflect the new
conditional expectation of ~V after each option trade.
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Otherwise, stock prices do not fully reflect the informa-
tion content of options trades for the time between when
the informed option market trading occurs and when the
information becomes public through another channel.
In this case, there will be a negative relation between
option volume and subsequent returns until the public
release of the information. Empirical Prediction 1 is,
therefore, a joint hypothesis that (a) short-sale costs make
O/S a negative cross-sectional predictor of future prices,
and (b) some of the information in O/S reaches equities
through other channels, such as earnings announcements,
that occur after the observation of O/S.6

Our model makes no prediction about the overall
volume in options and stocks together, only that option
trades are bad news relative to stock trades. Our goal is to
focus on informed traders’ choice between equities and
options, conditional on having a signal about the future
value of a firm. Therefore, our predictive measure is the
ratio of option volume to equity volume, rather than
unscaled option volume.

Result 2. The disparity in conditional mean equity values

between option and stock trades is weakly increasing in the

short-sale cost r.

Empirical Prediction 2. The predictive power of relative

option volume for future stock returns is increasing in the

cost of shorting equity.

Although Empirical Prediction 1 does not rely on cross-
sectional differences in short-sale costs, if such differ-
ences exist, our model predicts that option volume is a
worse signal for high short-sale cost equities than low
short-sale cost equities, but is still a valuable signal as
long as short-sale costs exist.

Result 3. The disparity in conditional mean equity values

between option and stock trades is weakly decreasing in the

option’s leverage l� ð@C=@SÞS=C ¼ y=2g.

Empirical Prediction 3. The predictive power of relative

option volume for future stock returns is decreasing in the

average Black-Scholes l of options traded.

Result 3 may be surprising at first because leverage is
usually an attractive feature of options. Indeed, in our
model leverage allows an informed trader’s investment to
be more sensitive to their private information, and there-
fore the overall use of options by informed traders
increases with leverage. However, this very attractiveness
creates large bid–ask spreads in options markets, making
it more expensive for informed traders to switch from
trading equities to options to avoid the short-sale cost.
Therefore, they make this switch for a smaller range of
signals, which weakens the O/S-return relation.
6 A common intuition is that call volume reflects good news and put

volume reflects bad news. Eq. (6) demonstrates that this intuition does

not hold in our setting because informed traders buy calls and sell puts

for good news, and buy puts and sell calls for bad news. Therefore,

unless trade direction is observable, it is unclear whether call (put)

volume reflects good or bad news.
Empirically, Result 3 suggests that volume in options
markets with higher leverage provides a weaker signal
than volume in options markets with lower leverage. For
a measure of leverage, we use l¼ ð@C=@SÞS=C, the elasti-
city of C with respect to S, reflecting the ‘‘bang-for-the-
buck’’ notion of leverage. We show in Appendix B that
ð@C=@SÞS=C ¼ y=2g in our model. Empirically, we use the
Black-Scholes l because our model’s l does not account
for different strike prices. Result 3 indicates there exists a
spread between conditional means of ~V regardless of the
leverage l, but that the spread is larger for smaller values
of l. Therefore, our empirical prediction is that O/S
predicts returns for all levels of l, but most strongly for
low l.

Result 4. Equity value has higher skewness conditional on a

call trade than conditional on a put trade.7

Empirical Prediction 4. The ratio of call volume to put

volume varies positively with the future skewness of stock

returns.

Result 4 follows from the equilibrium trading strategy
described in Section 3.1. Following the notation used to
describe the informed trader’s strategy in Eq. (6), skew-
ness conditional on a put trade is low because, if
informed, it reflects either moderately good news (i.e.,
E 2 ðk4,k5�) or extremely bad news (i.e., Erk1). Similarly,
skewness conditional on a call trade is high because, if
informed, it reflects either moderately bad (i.e., E 2 ðk2,k3�)
or extremely good news (i.e., E4k6).
4. Empirical tests

The option data for this study come from the Ivy
OptionMetrics database, which provides end-of-day sum-
mary statistics on all exchanged-listed options on U.S.
equities. The summary statistics include option volume,
quoted closing prices, and option Greeks. The Option-
Metrics database, and hence the sample for this study,
spans from 1996 through 2010. The final sample for this
study is dictated by the intersection of OptionMetrics,
Compustat Industrial Quarterly, and Center for Research
in Security Prices (CRSP) Daily data. We restrict the
sample to firm-weeks with at least 25 call and 25 put
contracts traded to reduce measurement problems asso-
ciated with illiquid option markets. We require each
observation to have a minimum of six months of past
weekly option and equity volumes because some of our
analyses involve measuring firms’ volumes relative to
their historical averages. We also eliminate closed-end
funds, real estate investment trusts, American depository
receipts, and firms with a stock price below $1. The
intersection of these databases and data restrictions
results in 611,173 firm-weeks corresponding to approxi-
mately 730 calendar weeks and 1,660 unique firms
per year.
7 Our proof of this result requires that the uninformed trader

demand for each asset gi does not approach zero. If it did, markets

would begin to fail and the skewness result can reverse.
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For each firm i in week w, we sum the total option and
equity volumes, denoted by OPVOLi,w and EQVOLi,w,
respectively. Specifically, OPVOLi,w equals the total
volume in option contracts across all strikes for options
expiring in the 30 trading days beginning five days after
the trade date.8 We report EQVOLi,w in round lots of 100
to make it more comparable to the quantity of option
contracts that each pertain to 100 shares. We define the
option to stock volume ratio, or O=Si,w, as

O=Si,w ¼
OPVOLi,w

EQVOLi,w
: ð7Þ

Panel A of Table 1 contains descriptive statistics of
O=Si,w (hereafter O/S for notational simplicity) for each
year in our sample. The sample size increases substan-
tially over the 1996–2010 window. The number of firm-
weeks increases from 29,426 in 1997 to 45,243 in 2010.9

The remainder of Panel A presents descriptive statistics of
O/S for each year of the sample. The sample mean of O/S is
5.77%, which indicates that there are roughly 17 times
more equity round lots traded than option contracts with
times to expiration between five and 35 trading days.
O/S is positively skewed throughout the sample period
due to a high concentration of relative option volume
among a small subset of firms.

Panel B of Table 1 presents volume characteristics by
deciles of O/S. Although low O/S firms tend to be smaller,
our initial data requirement of 25 calls and 25 puts traded
in a week tilts our sample toward larger and more liquid
firms, which mitigates, but fails to eliminate, concerns
that the O/S-return relation is attributable to transaction
costs. The average market capitalization of firms exceeds
$2 billion in each O/S decile. VLC and VLP indicate the
number of call and put contracts traded in a given week,
respectively. Across all deciles of O/S, the number of call
contracts traded exceeds the number of put contracts,
which is consistent with calls being more liquid than puts.
High O/S firms also tend to have higher levels of both
option and equity volume, though equity volume changes
much less across the O/S deciles. In our model, high
O/S reflects negative private information, and hence our
univariate trading strategy based on O/S consists of taking
a short position in higher equity volume stocks (i.e., high
O/S stocks) and a long position in lower equity volume
stocks (i.e., low O/S stocks). This raises concerns that
the predictive power of O/S could reflect compensation
for taking positions in low liquidity firms. We attempt
to mitigate these concerns in several ways, which are
8 We exclude options expiring within five trading days to avoid

measuring mechanical trading volume associated with option traders

rolling forward to the next expiration date. The results are qualitatively

unchanged if we include options with longer expirations. As an addi-

tional robustness check, we separate option volume into moneyness

categories and find that at-the-money, in-the-money, and out-of-the-

money option volumes all predict future returns once scaled by equity

volume. The consistency of the O/S-return relation across moneyness

categories mitigates concerns that our model omits critical determinants

of the O/S-return relation by focusing on a single strike price.
9 In our sample, 1996 has many fewer firm-week observations due

to the requirement that six months of prior data be available for each

firm.
discussed in greater detail below. Panel B also presents
firm characteristics by deciles of O/S. SIZE (LBM) equals
the log of market capitalization (book-to-market) corre-
sponding to firms’ most recent quarterly earnings
announcement. MOMEN equals firms’ cumulative return
measured over the prior six months. High O/S firms tend
to be larger, have lower book-to-market (BM) ratios, and
higher return momentum.

Panel A of Table 2 presents time-series factor regres-
sions for each O/S decile using capital asset pricing model
(CAPM), three-factor, and four-factor risk adjustments.
To compute weekly O/S decile returns, we sort firms by
O/S at the end of each week, skip one trading day, and
compute the equal-weighted return for a portfolio of all
firms in each decile over the following five trading days.10

For example, when there are no trading holidays, we
compute O/S from Monday through Friday of a given
calendar week, skip the Friday-to-Monday return, and
compute a weekly return from the close of markets on
Monday to the close of markets on the following Monday.

To calculate four-factor portfolio alphas, we regress
the weekly excess return corresponding to each O/S decile
on the contemporaneous three Fama-French and momen-
tum factors.11 Specifically, we estimate three variants of
the following regression for each O/S decile:

rp
w�rf

w ¼ aþb1ðr
mkt
w �rf

wÞþb2HMLwþb3SMBwþb4UMDwþEw,

ð8Þ

where rp
w is the week w return on an equal-weighted

portfolio of stocks in a given O=Si,w�1 decile. We denote
the risk-free rate as rf

w and the market return as rmkt
w .

HMLw and SMBw correspond to the weekly returns asso-
ciated with high-minus-low market-to-book and small-
minus-big strategies. Similarly, UMDw equals the weekly
return associated with a high-minus-low momentum
strategy. The CAPM model omits all factors except for
rmkt

w �rf
w and the three-factor model omits UMDw.

Our main result is that the intercepts from these regres-
sions decrease with O/S, indicating that low O/S firms
outperform high O/S firms. In the four-factor regression, we
find that the portfolio of firms in the lowest O/S decile have a
0.19% alpha in the following week while the portfolio of firms
in the highest O/S decile have a �0.15% alpha. The ‘‘1–10’’
row at the bottom of the table contains a statistical test for
the difference of the low and high O/S decile portfolios, and
shows that the 0.34% difference in the four-factor alphas are
highly significant (t-statistic¼5.00). The result is similar in
statistical and economic magnitude for the CAPM and three-
factor regressions, resulting in low-high alphas of 0.34%
(t-statistic¼4.20) and 0.30% (t-statistic¼4.29), respectively.
The final ‘‘(1þ2)–(9þ10)’’ row contains a statistical test for
the difference between low and high O/S quintile portfolios,
10 This restriction is important because of non-synchronous closing

times across option and equity markets. Removing this restriction does

not materially affect our results.
11 We compute weekly factors to match our Monday close to

subsequent Monday close time-frame by first compounding the returns

for each of the size/BM and size/momentum portfolios and then

computing the long-short return that defines the factors, as described

on Ken French’s Web site.



Table 1
Descriptive statistics by year.

Panel A provides sample size information and descriptive statistics of O=Si,w (shown as a percentage), where O=Si,w equals the ratio of option volume to

equity volume of firm i in week w as outlined in Section 4. Panel B gives average firm characteristics by decile of O/S. The sample consists of 611,173 firm-

weeks spanning 1996 through 2010. VLC (VLP) equals the total call (put) contract volume traded in a given week; each contract represents 100 shares.

OPVOL equals the sum of VLC and VLP. EQVOL equals the total equity volume traded, in units of 100 shares. SIZE (LBM) equals the log of market

capitalization (book-to-market) corresponding to firms’ most recent quarterly earnings announcement. MOMEN equals firms’ cumulative market-

adjusted return measured over the six months prior to week w, in percent.

Panel A: Sample characteristics and O/S descriptive statistics by year

Firms Firm-weeks MEAN P25 MEDIAN P75 SKEW

1996 1,020 12,006 6.260 2.163 4.359 8.494 5.822

1997 1,422 29,426 6.193 2.159 4.317 8.405 6.990

1998 1,655 32,970 5.636 1.866 3.768 7.381 5.803

1999 1,724 35,296 5.408 1.828 3.749 7.374 5.802

2000 1,733 40,696 5.024 1.873 3.738 7.057 68.868

2001 1,587 38,182 4.585 1.520 3.121 6.026 8.112

2002 1,533 36,087 3.835 1.283 2.765 5.619 4.507

2003 1,470 36,815 4.381 1.363 3.095 6.619 20.938

2004 1,590 41,062 5.425 1.615 3.782 8.280 9.801

2005 1,737 45,527 6.218 1.683 4.068 9.324 73.627

2006 1,848 52,299 7.329 1.941 4.786 10.775 26.834

2007 1,980 57,735 7.304 1.928 4.720 10.732 23.595

2008 1,914 57,035 6.249 1.523 3.722 8.648 8.684

2009 1,814 50,794 6.452 1.711 4.107 9.092 13.388

2010 1,870 45,243 6.322 1.542 3.792 8.643 9.521

ALL 611,173 5.775 1.733 3.859 8.165 19.486

Panel B: Firm characteristics by deciles of O/S

VLC VLP OPVOL EQVOL SIZE LBM MOMEN

1 (Low) 228 124 353 74,095 7.734 0.375 0.461

2 479 249 728 66,965 7.555 0.359 2.147

3 827 439 1,266 74,415 7.542 0.350 2.972

4 1,342 727 2,069 85,184 7.594 0.342 3.754

5 2,080 1,160 3,240 97,036 7.671 0.332 4.300

6 3,390 1,924 5,314 116,808 7.788 0.323 5.189

7 5,264 3,103 8,368 136,539 7.933 0.312 5.751

8 8,072 4,993 13,064 156,023 8.091 0.301 6.878

9 12,145 7,791 19,936 164,785 8.190 0.293 7.942

10 (High) 25,197 15,807 41,003 148,488 8.128 0.273 11.058

High–low 24,968 15,683 40,651 74,393 0.394 �0.102 10.597
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formed by combining the two lowest and two highest decile
portfolios. The quintile strategy alphas attenuate relative to
the decile strategy but remain economically and statistically
significant for all three factor models.

As predicted by our model, in addition to high O/S
indicating bad news, low O/S indicates good news: a
portfolio of firms with low O/S has significantly positive
alphas in the week after portfolio formation. In the
context of our model, low relative option volume indi-
cates good news because informed traders use equity
more (and options less) frequently for positive signals
than negative ones due to the equity short-sale costs.

Table 2 also presents the factor loadings (b coefficients
from the estimates of Eq. (8)). We find that the low-high
O/S strategy has a significantly negative loading on the
market and UMD factors and a positive loading on the
SMB factor. The negative market beta indicates that high
O/S firms have more market exposure than low O/S firms,
the opposite of what one would expect if the O/S-return
relation reflects exposure to market risk. The remaining
factor loadings confirm the univariate patterns shown in
Table 1 in a multivariate setting: low O/S firms tend to be
smaller firms with low book-to-market ratios and low
momentum.

One potential concern with the results in Panel A of
Table 2 is that some firms could have consistently higher
O/S and lower average returns for reasons unrelated to
our information story and not captured by the four-factor
risk adjustment. To address this concern, Panels B and C of
Table 2 reexamine our return predictability tests after
sorting by within-firm changes in O/S. In Panel B, we sort
firms by DO=S, the change in O/S relative to a rolling
average of past O/S for each firm. Specifically, we define
DO=S as

DO=Si,w ¼
O=Si,w�O=Si

O=Si

, ð9Þ

where O=Si is the average O=Si,w for the firm over the
prior six months. We sort the cross-section of firms by



Table 2

Factor regression results by deciles of O/S, DO=S, and OO=S.

Panel A presents factor regression results across deciles of O=Si,w , where O=Si,w equals the ratio of option volume to equity volume of firm i in week w. Decile portfolios are formed at the conclusion of each week,

ranging from 1 to 10 with the highest (lowest) values located in the 10th (1st) decile. The sample consists of 611,173 firm-weeks spanning 1996 through 2010. Portfolio returns are measured in week wþ1 and

regressed on three sets of contemporaneous risk factors: the excess market return (MKTRF); three Fama-French factors (MKTRF, SMB, and HML); and the three Fama-French and momentum factors (UMD). The intercept

in this regression (INT) is the portfolio alpha. Panel B is defined analogously for DO=S, where DO=S equals the difference between O/S in the portfolio formation week and the average over the prior six months, scaled by

this average. Panel C is defined analogously for OO=S, where OO=S is the percentile rank in the firm-specific time-series of O/S. All returns are shown as percentages, t-statistics are shown in parentheses.

Panel A: Factor regressions results across deciles of O/S

CAPM Three-factor Four-factor

INT MKTRF INT MKTRF SMB HML INT MKTRF SMB HML UMD

1 (Low) 0.178 1.049 0.144 1.062 0.274 0.269 0.185 0.986 0.125 0.317 �0.257
(2.12) (35.30) (1.77) (35.80) (5.51) (4.86) (2.37) (33.02) (2.45) (5.94) �(8.21)

2 0.014 1.135 �0.007 1.115 0.089 0.404 0.035 1.035 �0.068 0.455 �0.269
(0.17) (37.79) �(0.09) (37.33) (1.77) (7.25) (0.45) (34.57) �(1.32) (8.50) �(8.57)

3 0.064 1.166 0.048 1.125 �0.011 0.510 0.083 1.059 �0.141 0.552 �0.223
(0.72) (37.13) (0.57) (36.69) �(0.22) (8.90) (1.01) (33.86) �(2.64) (9.87) �(6.82)

4 �0.028 1.183 �0.034 1.128 �0.121 0.511 0.004 1.057 �0.261 0.556 �0.240
�(0.31) (36.99) �(0.40) (36.35) �(2.33) (8.82) (0.04) (33.53) �(4.83) (9.87) �(7.25)

5 �0.072 1.253 �0.070 1.186 �0.217 0.514 �0.032 1.114 �0.360 0.560 �0.244
�(0.78) (38.21) �(0.81) (37.61) �(4.10) (8.72) �(0.38) (34.77) �(6.56) (9.78) �(7.29)

6 �0.042 1.252 �0.043 1.182 �0.202 0.580 �0.010 1.119 �0.327 0.620 �0.214
�(0.43) (36.86) �(0.49) (36.45) �(3.71) (9.57) �(0.11) (33.63) �(5.75) (10.43) �(6.15)

7 �0.029 1.301 �0.024 1.224 �0.273 0.554 0.005 1.170 �0.379 0.588 �0.181
�(0.31) (38.22) �(0.27) (37.84) �(5.03) (9.18) (0.05) (35.02) �(6.63) (9.85) �(5.17)

8 �0.065 1.287 �0.052 1.202 �0.350 0.536 �0.032 1.166 �0.421 0.559 �0.123
�(0.69) (38.92) �(0.61) (38.86) �(6.74) (9.27) �(0.38) (36.14) �(7.64) (9.69) �(3.63)

9 �0.101 1.244 �0.092 1.157 �0.333 0.598 �0.076 1.126 �0.394 0.618 �0.104
�(1.09) (37.76) �(1.10) (38.04) �(6.52) (10.53) �(0.91) (35.42) �(7.25) (10.87) �(3.13)

10 (High) �0.164 1.229 �0.158 1.147 �0.300 0.587 �0.153 1.137 �0.318 0.593 �0.031
�(1.85) (38.89) �(1.97) (39.29) �(6.12) (10.77) �(1.90) (37.06) �(6.06) (10.81) �(0.98)

1–10 0.342 �0.180 0.302 �0.085 0.574 �0.318 0.338 �0.151 0.443 �0.275 �0.225
(4.20) �(6.22) (4.29) �(3.30) (13.33) �(6.63) (5.00) �(5.86) (10.05) �(5.97) �(8.34)

(1þ2)–(9þ10) 0.229 �0.144 0.193 �0.063 0.498 �0.255 0.224 �0.121 0.384 �0.219 �0.195
(3.45) �(6.13) (3.43) �(3.08) (14.46) �(6.67) (4.19) �(5.90) (11.00) �(5.99) �(9.10)

Panel B: Factor regressions results across deciles of DO=S

CAPM Three-factor Four-factor

INT MKTRF INT MKTRF SMB HML INT MKTRF SMB HML UMD

1 (Low) 0.127 1.180 0.114 1.142 �0.027 0.447 0.163 1.050 �0.208 0.505 �0.310

(1.37) (35.82) (1.27) (34.93) �(0.50) (7.32) (1.91) (32.22) �(3.73) (8.67) �(9.08)

2 0.018 1.252 0.010 1.200 �0.105 0.503 0.055 1.116 �0.270 0.556 �0.284

(0.19) (37.80) (0.11) (37.06) �(1.93) (8.32) (0.64) (34.28) �(4.85) (9.56) �(8.33)

3 �0.003 1.270 �0.005 1.213 �0.160 0.486 0.031 1.145 �0.294 0.529 �0.229

�(0.03) (38.03) �(0.05) (37.18) �(2.92) (7.98) (0.36) (34.33) �(5.15) (8.88) �(6.57)

4 �0.018 1.281 �0.013 1.209 �0.251 0.525 0.024 1.139 �0.388 0.570 �0.236

�(0.19) (38.23) �(0.15) (37.68) �(4.66) (8.77) (0.28) (34.83) �(6.95) (9.74) �(6.88)

5 �0.022 1.257 �0.013 1.181 �0.301 0.502 0.019 1.121 �0.419 0.540 �0.202

�(0.24) (37.97) �(0.15) (37.45) �(5.68) (8.52) (0.23) (34.60) �(7.56) (9.32) �(5.96)

6 �0.083 1.239 �0.078 1.170 �0.248 0.497 �0.052 1.123 �0.341 0.527 �0.160

�(0.90) (38.17) �(0.91) (37.55) �(4.74) (8.54) �(0.62) (34.77) �(6.18) (9.14) �(4.74)
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Panel B: Factor regressions results across deciles of DO=S

7 �0.089 1.226 �0.085 1.157 �0.243 0.505 �0.062 1.114 �0.327 0.532 �0.143

�(1.00) (38.70) �(1.02) (38.24) �(4.79) (8.94) �(0.75) (35.46) �(6.08) (9.47) �(4.35)

8 �0.059 1.186 �0.060 1.120 �0.198 0.546 �0.040 1.083 �0.271 0.570 �0.127

�(0.68) (38.15) �(0.74) (37.94) �(3.99) (9.90) �(0.50) (35.22) �(5.16) (10.37) �(3.93)

9 �0.025 1.153 �0.039 1.108 �0.043 0.522 �0.024 1.080 �0.097 0.539 �0.092

�(0.30) (39.19) �(0.50) (39.04) �(0.91) (9.85) �(0.31) (36.41) �(1.91) (10.17) �(2.96)

10 (High) �0.090 1.055 �0.120 1.030 0.132 0.531 �0.103 0.999 0.071 0.551 �0.104

�(1.12) (37.05) �(1.59) (37.68) (2.86) (10.40) �(1.38) (35.03) (1.46) (10.80) �(3.47)

1–10 0.217 0.125 0.234 0.112 �0.159 �0.084 0.266 0.051 �0.279 �0.045 �0.206

(3.38) (5.48) (3.68) (4.82) �(4.09) �(1.94) (4.38) (2.18) �(7.02) �(1.09) �(8.47)

(1þ2)–(9þ10) 0.129 0.112 0.140 0.102 �0.110 �0.052 0.172 0.043 �0.226 �0.014 �0.199

(2.45) (5.96) (2.68) (5.34) �(3.43) �(1.45) (3.49) (2.29) �(7.02) �(0.42) �(10.10)

Panel C: Factor regressions results across deciles of OO=S

CAPM Three-factor Four-factor

INT MKTRF INT MKTRF SMB HML INT MKTRF SMB HML UMD

1 (Low) 0.012 1.364 0.025 1.290 �0.318 0.456 0.096 1.156 �0.583 0.542 �0.454

(0.10) (32.13) (0.22) (30.76) �(4.52) (5.83) (0.90) (28.12) �(8.29) (7.38) �(10.54)

2 0.077 1.321 0.085 1.260 �0.237 0.403 0.140 1.156 �0.442 0.469 �0.352

(0.76) (36.77) (0.87) (35.48) �(3.98) (6.07) (1.52) (32.82) �(7.34) (7.44) �(9.54)

3 �0.009 1.286 �0.012 1.231 �0.149 0.468 0.038 1.138 �0.333 0.527 �0.316

�(0.10) (37.43) �(0.13) (36.42) �(2.63) (7.41) (0.43) (33.69) �(5.77) (8.73) �(8.94)

4 0.039 1.267 0.040 1.209 �0.183 0.466 0.082 1.130 �0.339 0.517 �0.269

(0.41) (37.56) (0.44) (36.58) �(3.29) (7.56) (0.94) (33.77) �(5.93) (8.65) �(7.67)

5 �0.015 1.192 �0.018 1.139 �0.146 0.463 0.013 1.081 �0.259 0.499 �0.194

�(0.17) (37.45) �(0.21) (36.58) �(2.80) (7.96) (0.15) (33.76) �(4.74) (8.73) �(5.79)

6 �0.085 1.183 �0.088 1.131 �0.138 0.450 �0.062 1.082 �0.235 0.481 �0.166

�(1.01) (39.40) �(1.10) (38.65) �(2.81) (8.24) �(0.79) (35.80) �(4.55) (8.91) �(5.25)

7 �0.034 1.172 �0.041 1.118 �0.115 0.511 �0.022 1.083 �0.185 0.533 �0.119

�(0.40) (38.69) �(0.51) (38.28) �(2.35) (9.36) �(0.28) (35.57) �(3.55) (9.80) �(3.75)

8 �0.023 1.156 �0.034 1.107 �0.070 0.520 �0.021 1.082 �0.119 0.536 �0.085

�(0.29) (40.65) �(0.46) (40.67) �(1.54) (10.24) �(0.28) (37.98) �(2.45) (10.54) �(2.84)

9 0.028 1.130 0.017 1.084 �0.063 0.503 0.031 1.056 �0.116 0.520 �0.092

(0.34) (38.89) (0.22) (38.61) �(1.33) (9.60) (0.41) (36.00) �(2.31) (9.92) �(2.98)

10 (High) �0.099 1.104 �0.115 1.056 �0.032 0.570 �0.108 1.043 �0.057 0.578 �0.042

�(1.22) (38.68) �(1.55) (39.08) �(0.71) (11.31) �(1.46) (36.75) �(1.17) (11.40) �(1.43)

1–10 0.111 0.260 0.140 0.234 �0.286 �0.114 0.205 0.112 �0.526 �0.037 �0.411

(1.19) (7.88) (1.53) (7.00) �(5.11) �(1.83) (2.45) (3.51) �(9.62) �(0.64) �(12.28)

(1þ2)–(9þ10) 0.099 0.224 0.124 0.204 �0.234 �0.110 0.177 0.104 �0.431 �0.047 �0.338

(1.40) (8.87) (1.77) (8.00) �(5.48) �(2.32) (2.82) (4.33) �(10.53) �(1.09) �(13.48)
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12 The main exception pertains to the concentration of the O/S-

return relation among firms with high short-sale costs. Across all three

horizons, we find that O/S strategy alphas are increasing in short-sale

costs. However, while this result is statistically significant for the

monthly and weekly horizons, it is not for the daily horizon. The absence

of this effect at daily horizons is consistent with short-sale costs

reflecting market frictions that prevent the information content of O/S

from being reflected in equity prices in an immediate fashion. Untabu-

lated results available from the authors upon request.
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DO=S in each calendar week. Firms in the lowest decile
of DO=S earn a four-factor alpha of 0.16% per week
(t-statistic¼1.91). Similarly, firms in the highest decile
of DO=S earn �0.10% per week (t-statistic¼�1.38). The
DO=S decile strategy produces an alpha of 0.27% per week
(t-statistic¼4.38) and the DO=S quintile strategy pro-
duces an alpha of 0.17% per week (t-statistic¼3.49).
The DO=S factor loadings are closer to zero than those
for O/S, consistent with our change-based specification
mitigating the influence of persistent firm characteristics
that arise when sorting firms by the level of O/S. The two
loadings that remain significant are SMB, which switches
signs from positive in Panel A to negative in Panel B, and
UMD, which remains strongly negative.

As an alternative means of calculating abnormal levels
of O/S, Panel C of Table 2 estimates factor-adjusted
portfolio returns after sorting firms based on within-firm
variation in O/S. We sort each firm-week into an OO=S
decile by ranking it relative to the firm’s O/S time-series
over the past six months (26 weeks). For example, firms in
the highest OO=S decile have O/S above the 90th percen-
tile of their own O/S distribution measured over the past
six months. Given the large swings in O/S documented in
RSS, we use six months of data to ensure that the firm’s
reference distribution has a sufficiently large number of
observations to capture meaningful firm-specific varia-
tion in O/S. Our choice of six months is in line with Lee
and Swaminathan (2000), Llorente, Michaely, Saar, and
Wang (2002), Barber and Odean (2008), and Sanders and
Zdanowicz (1992) that all use periods of six to 12 months
to establish baseline levels of firm-specific volume. We
find that the use of a longer reference window, such as
one year, produces qualitatively similar results but
reduces the number of observations available for our
analyses. We also find similar results when using a
shorter reference window, such as the 10 weeks used in
Gervais, Kaniel, and Mingelgrin (2001), however doing so
reduces the robustness of OO=S in predicting future
returns.

The benefit of OO=S relative to DO=S is that it relies on
firms’ own rolling distribution to assess abnormal levels
of O/S and thus can be calculated for a single firm without
reference to the cross-sectional distribution. The cost of
not referencing the cross-sectional distribution is that
OO=S is more sensitive to market-wide changes in option
or equity volumes that are unrelated to firm-specific
private information. Because OO=S relies on pure time-
series sorts, unlike the cross-sectional sorts in Panels A
and B, there is no guarantee that we have an equal
number of firms in each decile of OO=S in a given week.
Regardless of the number of firms in each OO=S bin, we
compute the weekly return of an equal-weighted portfo-
lio of all constituent firms. We find that a portfolio
consisting of a long position in the lowest decile of
OO=S firms and a short position in highest decile
of OO=S firms earns a four-factor alpha of 0.21%
(t-statistic¼2.45), while a quintile strategy produces a
four-factor alpha of 0.18% (t-statistic¼2.82). The consis-
tency of return predictability across O/S, DO=S, and OO=S
mitigates concerns that the O/S-return relation reflects
compensation for a static form of risk.
Our main analyses focus on the relation between O/S
and weekly returns. We chose a weekly horizon, rather
than daily or monthly, to balance competing concerns.
Although our model does not formally define the length of
a given period, the endogenous determination of bid–ask
spreads is intuitively linked to short horizons, for example
the intraday volumes in EOS and the daily O/S in RSS. On
the other hand, shorter horizons are subject to the
concern that the pattern of predictable returns is attribu-
table to portfolio rebalancing costs. While we present
results here pertaining to weekly observations of O/S and
returns, untabulated results demonstrate that our infer-
ences are unchanged when conducting the analysis using
daily or monthly sampling frequencies.12

Table 3 presents summary statistics from weekly
Fama-MacBeth regressions where the dependent variable
is the firm’s return during the week after observing O/S,
denoted by RET(1). Columns 1 through 3 of Panel A
contain the results of regressing RET(1) on deciles of
O/S. For example, in column 1 the O/S coefficient is
�0.026, indicating that firms in the highest O/S decile
outperform firms in the lowest decile by an average of
0.23% (¼�0.026�9) per week. The O/S coefficient has a
corresponding t-statistic of �3.99, where standard errors
are computed across weekly coefficient estimates as in
Fama and MacBeth (1973). Columns 1 through 7 demon-
strate that the relation between O/S and RET(1) is robust
to controlling for MOMEN, log market capitalization
(SIZE), and log book-to-market (LBM). Columns 2 through
7 also control for the Amihud (2002) illiquidity ratio,
AMIHUD, defined as the ratio of absolute returns to total
dollar volume where higher values indicate lower liquid-
ity, and vice versa. AMIHUD is measured on a daily basis
and then averaged over the six months prior to portfolio
formation. Columns 3 through 6 include returns in the
portfolio formation week, RET(0), to control for the
possibility of weekly return reversals. Consistent with
the results in Jegadeesh (1990) and Lehmann (1990), the
RET(0) coefficient is significantly negative, indicating a
negative relation between returns in weeks w�1 and w.
Across columns 1 through 3, the O/S coefficient is sig-
nificantly negative, with the coefficients and t-statistics
remaining stable across specifications.

Column 4 of Panel A contains regression results where
O/S is decoupled into numerator and denominator, option
volume (OPVOL) and equity volume (EQVOL). Because
EQVOL and OPVOL are highly correlated with SIZE, our
regression analysis instead uses changes in EQVOL and
OPVOL, denoted by DEQVOL and DOPVOL. Following
Eq. (9), the ‘‘D’’ version of each variable is the level of
the variable less the average of the variable over the prior



Table 3
Fama-MacBeth multivariate regressions.

Panel A presents Fama-MacBeth regression results from regressing RET(1) on deciles of O/S, DOPVOL, and DEQVOL. The sample consists of 611,173

firm-weeks spanning 1996 through 2010. RET(1) is the firm’s return in the first week following the observation of O=Si,w , the ratio of option volume to

equity volume of firm i in week w. OPVOLi,w equals the total option volume of firm i in week w. EQVOLi,w is defined analogously for equity volume.

DOPVOL is the difference between OPVOL in the observation week and the average OPVOL over the prior six months, scaled by this average. DEQVOL is

defined analogously. Decile portfolios are formed at the conclusion of each week. Deciles range from 1 to 10 with the highest (lowest) values located in

the 10th (1st) decile. RET(0) is the market-adjusted return in the portfolio formation week. MOMEN equals the cumulative market-adjusted returns

measured over the prior six months. SIZE is the log of market capitalization of the firm and LBM is the log of the firm’s book-to-market ratio measured at

the firm’s last quarterly announcement date. AMIHUD is the Amihud illiquidity ratio of firm i in week w. Panel B repeats this analysis using DO=S, the

difference between O/S in the observation week and the average O/S over the prior six months, scaled by this average. In Panel C, OO=S is the percentile

rank in the firm-specific time-series measured relative to the distribution of the firm’s O/S over the past six months. OOPVOL and OEQVOL are

analogously defined for OPVOL and EQVOL. Standard errors are computed across weekly coefficient estimates, following Fama and MacBeth (1973). The

resulting t-statistics are shown in parentheses. The notations nnn, nn, and n indicate the coefficient is significant at the 1%, 5%, and 10% level, respectively.

All returns are shown as percentages.

Panel A: Fama-MacBeth regressions of RET(1) on O/S

(1) (2) (3) (4) (5) (6) (7)

Intercept �0.507 �0.297 �0.355 �0.331 �0.355 �0.368 �0.312

(�1.13) (�0.59) (�0.74) (�0.69) (�0.74) (�0.77) (�0.62)

Decile(O/S) �0.026nnn
�0.025nnn

�0.022nnn – �0.028nnn
�0.019nnn

�0.022nnn

(�3.99) (�3.64) (�3.32) – (�3.36) (�2.88) (�3.22)

Decile(DOPVOL) – – – �0.011nn 0.013nn – –

– – – (�2.38) (1.98) – –

Decile(DEQVOL) – – – 0.030nnn – 0.023nnn 0.022nnn

– – – (4.99) – (3.99) (3.65)

RET(0) – – �0.015nnn
�0.014nnn

�0.015nnn
�0.014nnn –

– – (�3.39) (�3.27) (�3.38) (�3.29) –

MOMEN 0.003nn 0.003nn 0.003n 0.002n 0.002n 0.002n 0.003n

(2.05) (2.14) (1.93) (1.74) (1.81) (1.71) (1.91)

SIZE 0.037 0.023 0.026 0.011 0.024 0.019 0.016

(1.38) (0.77) (0.91) (0.41) (0.85) (0.65) (0.53)

LBM 0.137 0.141 0.159 0.228 0.146 0.180 0.169

(0.79) (0.82) (0.97) (1.36) (0.90) (1.11) (1.00)

AMIHUD �0.008n
�0.007n

�0.007n
�0.007n

�0.007n
�0.008n

(�1.93) (�1.71) (�1.87) (�1.77) (�1.67) (�1.85)

Adj-R2 (%) 4.694 5.032 5.810 5.783 5.967 5.975 5.210

Panel B: Fama-MacBeth regressions of RET(1) on DO=S

(1) (2) (3) (4) (5) (6) (7)

Intercept �0.458 �0.225 �0.294 �0.331 �0.254 �0.308 �0.241

(�0.99) (�0.45) (�0.61) (�0.69) (�0.53) (�0.64) (�0.47)

Decile(DO=S) �0.020nnn
�0.019nnn

�0.013nnn – �0.042nnn
�0.011nnn

�0.017nnn

(�4.36) (�4.20) (�3.20) – (�4.51) (�2.71) (�3.77)

Decile(DOPVOL) – – – �0.011nn 0.036nnn – –

– – – (�2.38) (3.53) – –

Decile(DEQVOL) – – – 0.030nnn – 0.025nnn 0.024nnn

– – – (4.99) – (4.18) (3.84)

RET(0) – – �0.015nnn
�0.014nnn

�0.015nnn
�0.014nnn –

– – (�3.37) (�3.27) (�3.35) (�3.26) –

MOMEN 0.003nn 0.003nn 0.003nn 0.002n 0.003n 0.002n 0.003nn

(2.16) (2.23) (2.01) (1.74) (1.83) (1.77) (2.00)

SIZE 0.030 0.015 0.019 0.011 0.014 0.011 0.008

(1.17) (0.54) (0.68) (0.41) (0.50) (0.41) (0.29)

LBM 0.206 0.207 0.214 0.228 0.222 0.229 0.228

(1.16) (1.17) (1.27) (1.36) (1.32) (1.37) (1.31)

AMIHUD – �0.008nn
�0.008n

�0.007n
�0.008n

�0.007n
�0.008nn

– (�2.11) (�1.90) (�1.87) (�1.91) (�1.86) (�2.02)

Adj-R2 (%) 4.506 4.822 5.606 5.783 5.778 5.780 5.009

Panel C: Fama-MacBeth regressions of RET(1) on OO=S

(1) (2) (3) (4) (5) (6) (7)

Intercept �0.424 �0.224 �0.274 �0.364 �0.243 �0.338 �0.264

(�0.90) (�0.44) (�0.56) (�0.75) (�0.49) (�0.69) (�0.51)

Decile(OO=S) �0.016nnn
�0.015nn

�0.010n – �0.033nnn
�0.010n

�0.016nnn

(�2.64) (�2.51) (�1.85) – (�3.09) (�1.76) (�2.73)
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Table 3 (continued )

Panel C: Fama-MacBeth regressions of RET(1) on OO=S

(1) (2) (3) (4) (5) (6) (7)

Decile(OOPVOL) – – – �0.011n 0.029nnn – –

– – – (�1.76) (2.60) – –

Decile(OEQVOL) – – – 0.027nnn – 0.022nnn 0.021nnn

– – – (4.06) – (3.36) (3.12)

RET(0) – – �0.014nnn
�0.013nnn

�0.013nnn
�0.013nnn –

– – (�3.22) (�3.06) (�3.07) (�3.08) –

MOMEN 0.003nn 0.003nn 0.003nn 0.003n 0.003nn 0.003n 0.003nn

(2.29) (2.36) (2.10) (1.88) (1.97) (1.93) (2.19)

SIZE 0.028 0.015 0.017 0.012 0.011 0.011 0.008

(1.06) (0.52) (0.62) (0.42) (0.39) (0.41) (0.27)

LBM 0.209 0.210 0.211 0.232 0.227 0.234 0.234

(1.20) (1.21) (1.27) (1.40) (1.38) (1.42) (1.35)

AMIHUD – �0.008n
�0.007n

�0.006 �0.007n
�0.006 �0.008n

– (�1.90) (�1.74) (�1.55) (�1.66) (�1.54) (�1.91)

Adj-R2 (%) 4.603 4.923 5.691 5.842 5.901 5.854 5.071

T.L. Johnson, E.C. So / Journal of Financial Economics 106 (2012) 262–286274
six months, all scaled by that average. Column 4 demon-
strates that both the numerator and denominator con-
tribute to predictability: the coefficient corresponding to
deciles of DOPVOL is �0.011 (t-statistic¼�2.38) and the
coefficient corresponding to deciles of DEQVOL is 0.030
(t-statistic¼4.99). This is consistent with our model’s pre-
diction that high option volume reflects negative private
information and high equity volume reflects positive private
information, once controlling for both volume measures.
The positive DEQVOL coefficient is also consistent with
Gervais, Kaniel, and Mingelgrin (2001), which argues that
abnormal volume garners additional visibility and therefore
predicts higher future returns. Column 5 demonstrates that
O/S remains negatively related to future returns after
controlling for DOPVOL, but the DOPVOL coefficient is
significantly positive, indicating that innovations in a firm’s
OPVOL are positive predictors of future returns after con-
trolling for a firm’s O/S. Finally, comparing the O/S coeffi-
cients in columns 3 and 6 or columns 2 and 7 shows that
the O/S-return relation is relatively unaffected by control-
ling for equity volume. Taken together, the results in Panel A
of Table 3 demonstrate a robust negative association
between O/S and future equity returns, distinct from weekly
return reversals, the pricing of liquidity, and the relation
between equity market volume and future returns.

Panel B of Table 3 repeats the Fama-MacBeth regressions
in Panel A but with DO=S replacing O/S. The main result
from Panel B is that DO=S is negatively associated with
future returns across all regression specifications, each
controlling for a different combination of momentum, size,
book-to-market, liquidity, short-term reversal, DOPVOL, and
DEQVOL. Panel C of Table 3 repeats the Fama-MacBeth
regressions using OO=S, OOPVOL, and OEQVOL and yields
results that are qualitatively identical to the findings in
Panel B. OO=S, OOPVOL, and OEQVOL rely on within-firm
variation to measure how the underlying variable ranks
relative to the firm’s historical distribution. For example, the
decile of OOPVOL reflects a firm-week’s rank relative to the
firm’s OPVOL distribution over the prior six months. In both
Panels B and C, comparing columns 2 and 7 or columns 3
and 6, we find that controlling for equity volume does not
significantly affect the magnitude of the O/S-return relation
regardless of whether we control for RET(0). However,
comparing columns 2 and 3 or columns 6 and 7, we find
that controlling for RET(0) reduces the magnitude of the
DO=S and OO=S coefficients regardless of whether DEQVOL
is a regressor. Across all specifications, DO=S and OO=S are
significant negative predictors of future returns, suggesting
that within-firm variation in O/S reflects the direction of
informed trade.

Having established a robust relation between O/S,
DO=S, and OO=S and future returns, we next examine
the duration of return predictability associated with each
measure. Fig. 1 shows the alphas from strategies with
progressively longer delays between the observation of
the O/S signal and the weekly return in question.
For example, the O/S strategy with a four-week lag sorts
firms by O/S measured four weeks prior to the realized
return window. This results in a weekly return series that
we use to compute four-factor alphas as in Eq. (8). Fig. 1
repeats this exercise with lags of 1–12 weeks, across all
three measures: O/S, DO=S, and OO=S. The top graph
shows weekly alphas and their 95% confidence interval.
The bottom graph shows cumulative alphas.

The top graph in Fig. 1 shows that the return predict-
ability associated with O/S is relatively short-lived,
decreasing sharply but remaining statistically significant
at the 5% level in the four weeks following portfolio
formation. The significant O/S-return relation disappears
after the sixth week following portfolio formation, which
is inconsistent with the O/S-return relation reflecting a
static dimension of risk correlated with O/S. The persis-
tence of return predictability suggests that it takes
multiple weeks for the information content of O/S to
become fully reflected in equity prices. Like O/S, both
DO=S and OO=S show patterns of return predictability
that are short-lived. Repeating this analysis at the 1%
significance level, we again find that return predictability
associated with O/S and DO=S persists for four and three
weeks, respectively (results untabulated). We also find
that OO=S does not predict future returns at the 1% level
at any horizon, consistent with the finding in Table 2 that



Fig. 1. Persistence of O/S-return relation. This figure presents the alphas associated with a portfolio that combines an equal-weighted long position in the

lowest decile with an equal-weighted short position in the highest decile of each relative option volume signal. The top graph shows weekly alphas,

where the surrounding error bars represent the 95% confidence interval. The bottom graph shows cumulative alphas. The portfolio is formed K weeks

after the observation of the signal, where K ranges from 1 to 12. O=Si,w equals the ratio of option volume to equity volume of firm i in week w. DO=S

equals the difference between O/S in the portfolio formation week and the average over the prior six months, scaled by this average. OO=S equals the

percentile rank in the firm-specific time-series of O/S. Alphas are the intercept in a time-series regression of weekly strategy returns on contemporaneous

weekly factor returns for the three Fama-French and momentum factors. The sample consists of 611,173 firm-weeks spanning 1996 through 2010.

Alphas are shown as percentages.
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OO=S has the lowest predictive power for future returns
among the three O/S measures. Unlike O/S and DO=S, the
OO=S measure does not reference the cross-sectional
distribution when assigning firms to portfolios. Thus,
the weaker predictive power associated with OO=S is
consistent with the measure being more sensitive to
market-wide variation in option or equity volumes that
are unrelated to private information. The bottom graph
in Fig. 1 shows that cumulative 12-week alphas range
from 0.9% to 1.5%, where O/S outperforms DO=S and
DO=S outperforms OO=S on a cumulative basis across all
durations.
Table 4 presents tests of Empirical Prediction 2, that the
predictive power of O/S for future returns is increasing in
short-sale costs. Our first measure of firm-specific short-sale
costs, following Nagel (2005), is the level of residual institu-
tional ownership RIi,q. We define RIi,q as the percentage of
shares held by institutions for firm i in quarter q, adjusted for
size in cross-sectional regressions. Specifically, RIi,q equals
the residual Ei,q from the following regression:

logitðINSTi,qÞ ¼ log
INSTi,q

1�INSTi,q

� �
¼ aqþb1,qSIZEi,qþb2,qðSIZE2

i,qÞþEi,q, ð10Þ



Table 4
Strategy alphas sorted by short-sale costs.

This table presents alphas for portfolios double-sorted by one of three different short-sale cost measures (RI, LF, and LS), and by one of three different relative

option measures (O/S, DO=S, and OO=S, as defined in Table 2). RI (residual institutional ownership) is obtained from cross-sectional regressions as detailed in

Nagel (2005). LF (loan fee) is the value-weighted average loan fee for institutional loans in the month prior to portfolio formation, and LS (loan supply) is the

quantity of shares available for lending scaled by shares outstanding at the end of the month prior to portfolio formation. In Panel A (B), firms are sorted each

week into quintiles (deciles) of each relative option volume signal and quintiles (terciles) of each short-sale cost measure, and returns are measured the following

week. Within each short-sale cost portfolio, strategy alphas are computed for a long-short position in the extreme O/S portfolios using a time-series regression on

the three Fama-French and momentum factors (factor loadings not reported). The main sample consists of 611,173 firm-weeks spanning 1996 through 2010,

however, the loan fee and supply data are only available from June 2002 through 2009. All returns are shown as percentages, t-statistics are in parentheses.

Panel A: Quintile alphas by quintiles of short-sale costs

O/S DO=S OO=S

RI(1): High short-sale costs 0.269 0.219 0.124

(2.24) (2.01) (0.99)

RI(2) 0.319 0.174 0.313

(3.40) (1.75) (2.71)

RI(3) 0.185 0.201 0.109

(2.39) (2.61) (1.17)

RI(4) 0.227 0.242 0.154

(2.67) (2.89) (1.70)

RI(5): Low short-sale costs 0.090 0.039 0.181

(1.17) (0.49) (1.98)

High–low short-sale costs 0.179 0.180 �0.057

(1.34) (1.34) �(0.38)

LF(1): Low short-sale costs 0.011 �0.151 0.098

(0.10) �(1.13) (0.72)

LF(2) �0.070 �0.099 �0.105

�(0.64) �(0.91) �(0.87)

LF(3) 0.156 0.088 0.066

(1.23) (0.68) (0.46)

LF(4) 0.358 0.229 0.429

(2.85) (2.05) (2.92)

LF(5): High short-sale costs 0.273 0.189 0.157

(2.06) (1.28) (0.90)

High–low short-sale costs 0.262 0.340 0.059

(1.56) (1.87) (0.16)

LS(1): High short-sale costs 0.258 0.553 0.431

(1.76) (3.76) (2.42)

LS(2) 0.065 0.001 �0.013

(0.50) (0.00) �(0.09)

LS(3) 0.130 0.119 0.144

(1.06) (1.09) (1.05)

LS(4) �0.024 0.035 0.115

�(0.21) (0.31) (0.89)

LS(5): Low short-sale costs �0.192 0.246 0.317

�(1.33) (2.19) (2.56)

High–low short-sale costs 0.449 0.306 0.114

(2.53) (1.65) (0.63)

Panel B: Decile alphas by terciles of short-sale costs

O/S DO=S OO=S

RI(1): High short-sale costs 0.471 0.366 0.271

(3.97) (3.34) (2.07)

RI(2) 0.358 0.272 0.151

(3.90) (3.20) (1.41)

RI(3): Low short-sale costs 0.183 0.209 0.259

(2.07) (2.32) (2.38)

High–low short-sale costs 0.288 0.157 0.009

(2.10) (1.13) (0.06)

LF(1): Low short-sale costs 0.038 �0.132 �0.029

�(0.34) �(1.11) �(0.20)

LF(2) 0.123 0.213 0.218

(0.84) (1.46) (1.19)
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Panel B: Decile alphas by terciles of short-sale costs

O/S DO=S OO=S

LF(3): High short-sale costs 0.309 0.456 0.378

(2.19) (2.98) (1.91)

High–low short-sale costs 0.348 0.588 0.479

(1.98) (3.13) (2.08)

LS(1): High short-sale costs 0.396 0.541 0.314

(2.52) (3.68) (1.68)

LS(2) �0.010 0.170 0.176

�(0.07) (1.46) (1.19)

LS(3): Low short-sale costs �0.184 0.258 0.323

�(1.17) (2.17) (2.15)

High–low short-sale costs 0.580 0.283 0.014

(2.78) (1.55) (0.07)

Table 4 (continued)
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where INSTi,q equals the fraction of shares outstanding held
by institutions as reflected in the Thomson Financial Institu-
tional Holdings (13F) database. We calculate quarterly hold-
ings as the sum of stock holdings of all reporting institutions
for each firm and quarter. Values of INSTi,q are winsorized at
0.0001 and 0.9999. Low levels of RIi,q (hereafter referred to
as RI) correspond to high short-sale costs because stock
loans tend to be scarce and, hence, short-selling is more
expensive when institutional ownership is low. We match RI
to a given firm-week by requiring a three-month lag between
the Thomson Financial report date and the first trading day of
a given week.

The other two measures of short-sale costs are more
direct, and rely on a proprietary data set of institutional
lending provided to us by Data Explorers. Data Explorers
aggregates information on institutional lending from
several market participants including hedge funds, invest-
ment banks, and prime brokers.13 Similar to the data sets
used in D’Avolio (2002) and Geczy, Musto, and Reed
(2002), this data set contains monthly institutional lend-
ing data on transacted loan fees and available loan supply.
The sample period is June of 2002 through December of
2009, covering approximately half of our main sample
period. From this data set, we derive our second measure
of firm-specific short-sale costs: LF, the value-weighted
average loan fee for institutional loans occurring in the
calendar month prior to the portfolio formation date.
Higher values of LF reflect higher short-sale costs because
investors must pay the lending fee to obtain the shares
necessary for shorting. The final measure of short-sale
costs, LS, is the total quantity of shares available for
lending, as a fraction of firms’ total shares outstanding,
at the conclusion of the calendar month prior to portfolio
formation. Lower values of LS correspond to higher short-
sale costs because investors must first locate lendable
shares before implementing a short position.

Panel A presents alphas for portfolios double-sorted into
short-sale cost quintiles and relative option volume quintiles,
for each of the three short-sale cost measures. Within each
13 See www.dataexplorers.comfor more details regarding the data.
short-sale cost quintile, we compute the four-factor alpha of
a long-short strategy using extreme quintiles of each relative
option volume measure (O/S, DO=S, and OO=S). For example,
the entry in the RI(1) row corresponding to the O/S signal
indicates that among firms in the lowest residual institu-
tional ownership quintile, a strategy long firms in the lowest
O/S quintile and short firms in the highest O/S quintile
produces a weekly alpha of 0.269% (t-statistic¼2.24).
The key tests of Empirical Prediction 2 are contained in the
‘‘High-low short-sale costs’’ rows, which examine differences
in strategy alphas across extreme short-sale cost quintiles.
The results in Panel A are mixed. Eight of the nine differences
in strategy alphas across extreme short-sale cost portfolios
are positive, indicating that O/S is a stronger signal for future
returns when short-sale costs are high. However, only three
of the nine are statistically significant at the 10% level, and
only one of the nine is significant at the 5% level.

Panel B presents analogous results for strategies rely-
ing on extreme deciles of relative option volume (rather
than quintiles), sorted by terciles (rather than quintiles) of
short-sale costs. We analyze 10�3 sorts because the
results in Table 2 indicate that decile strategies produce
larger alphas than quintile strategies, and because the
results in Panel A show that the near-extreme quintiles of
short-sale costs (2 and 4) often contain strategy alphas of
different signs than the extreme quintiles (1 and 5). For
example, the OO=S alpha is 0.098 in the lowest LF quintile
but �0.105 in the second-lowest LF quintile. The results
in Panel B confirm that 10�3 sorts produce a clearer
difference in strategy alphas across short-sale costs.
All nine of the ‘‘High-low short-sale costs’’ alphas are
positive, and five of the nine are significant at the 5% level.

Across both panels of Table 4, the differences in
strategy alphas across the extreme short-sale cost portfo-
lios are economically and statistically stronger for O/S
than the change-based measures, DO=S and OO=S. One
potential explanation is that DO=S and OO=S generate
weaker strategy alphas compared to O/S (as illustrated in
Table 3) and we therefore do not have the statistical power
to distinguish alphas across short-sale cost extremes.
Another potential explanation is that our change-based
measures are themselves correlated with changes in

www.dataexplorers.com
www.dataexplorers.com
www.dataexplorers.com
www.dataexplorers.com


Table 5
Option volume alphas sorted by leverage.

This table presents alphas for portfolios double-sorted by terciles of

open-interest-weighted average leverage (LM) of firm i in week w, and

by one of three different relative option measures (O/S, DO=S, and OO=S,

as defined in Table 2). In Panel A (B), firms are sorted each week into

quintiles (deciles) of each relative option volume signal and quintiles

(terciles) of leverage, and returns are measured the following week.

Within each LM portfolio, strategy alphas are computed for a long-short

position in the extreme O/S portfolios using a time-series regression on

the three Fama-French and momentum factors (factor loadings not

reported). The sample consists of 611,173 firm-weeks spanning 1996

through 2010. All returns are shown as percentages, t-statistics are in

parentheses.

Panel A: Quintile alphas by quintiles of leverage

O/S DO=S OO=S

LM(1): Low leverage 0.581 0.476 0.433

(4.67) (4.41) (3.59)

LM(2) 0.247 0.021 0.100

(2.39) (0.22) (0.93)

LM(3) 0.095 0.076 �0.053

(1.12) (0.95) �(0.61)

LM(4) (0.10) (0.07) 0.143

(1.45) (1.25) (2.05)

LM(5): High leverage �0.007 0.039 0.061

�(0.15) (0.86) (1.21)

Low-high leverage 0.589 0.437 0.372

(4.42) (3.84) (2.89)

Panel B: Decile strategy alphas by terciles of leverage

O/S DO=S OO=S

LM(1): Low leverage 0.711 0.499 0.262

(5.53) (4.29) (1.83)

LM(2) 0.259 0.236 0.207

(2.72) (2.80) (1.92)

LM(3): High leverage 0.042 0.004 0.040

(0.71) (0.06) (0.60)

Low–high leverage 0.669 0.496 0.221

(4.97) (3.81) (1.49)
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short-sale costs. In untabulated results, we show that
DO=S and OO=S are much more strongly positively corre-
lated with the prior week’s return than O/S. As argued in
Geczy, Musto, and Reed (2002) and D’Avolio (2002), short-
sale costs are a decreasing function of recent returns,
implying that DO=S and OO=S could be correlated with
recent changes in short-sale costs that our monthly and
quarterly short-sale cost measures fail to detect.

To summarize, Table 4 provides mixed support for
Empirical Prediction 2. Across three different measures of
short-sale costs and the three relative option volume
measures, in nearly all cases the portfolio alphas asso-
ciated with option volume strategies are higher for firms
with high short-sale costs. These differences are more
often statistically significant for the O/S strategy, and for
10�3 sorts. Collectively, the results in Table 4 provide
some evidence that informed traders use option markets
more frequently when short-sale costs are high.

Consistent with Empirical Prediction 3, Table 5 demon-
strates that the predictive power of relative option volume
for future stock returns is strongest when option leverage is
low. For each firm-week, leverage is defined as the open-
interest-weighted average of ð@C=@SÞS=C, as provided by
OptionMetrics, which we refer to as LM.14 Panel A of
Table 5 contains factor regression results for long-short O/S
quintile portfolios across quintiles of LM, where firms are
independently sorted by LM and O/S. The O/S alphas are
monotonically decreasing across quintiles of LM, where the
difference in portfolio alphas across the extreme LM quintiles
is significant at the 1% level (t-statistic¼4.42). The second
and third columns of Panel A indicate that the DO=S and
OO=S strategy alphas are also strongest among firms with
low leverage, with both alpha differences also significant at
the 1% level. Finally, similar to Table 4, Panel B repeats the
analysis using deciles of relative option volume and terciles
of option leverage. As in Panel A, portfolio alphas are
concentrated among firms with low option leverage for all
three option volume signals (t-statistics¼4.97, 3.81, and
1.49). The results in Table 5 are consistent with informed
traders moving a larger portion of their bets from shorting
stock to trading options when leverage is low.

To address the possibility that the O/S-return relation is
specific to only a subsample of our data, Fig. 2 presents
annual cumulative returns to three long-short strategies
assuming weekly portfolio rebalancing for each year in the
sample. The first strategy consists of an equal-weighted long-
short position in the extreme O/S deciles. We implement the
long-short strategy each week and compound the weekly
returns within each calendar year. The unconditional long-
short strategy (shown in grey) results in positive returns in
13 out of 15 years, with a mean return of 21.81% and a
standard deviation of 20.64%.15 The second strategy takes
long-short positions in extreme O/S deciles among firms in
the bottom tercile of residual institutional ownership (RI),
14 The results are qualitatively similar when using volume-weighted

average option leverage.
15 A comparable strategy using DO=S results in average annual

returns of 12.67%, and positive returns in 12 out of 15 sample years.

Sorting by OO=S results in average annual returns of 7.87%, and positive

returns in nine of 15 sample years (results untabulated).
corresponding to firms with the highest short-sale costs. This
strategy (shown in black) produces positive returns in 13 out
of 15 years of the sample, while increasing the mean of the
annual cumulative returns to 40.37%.16 The third strategy
corresponds to analogous long-short returns for firms in the
lowest leverage (LM) tercile. Conditional upon being in the
lowest LM tercile, the long-short O/S strategy (shown in
white) results in positive hedge returns in 13 of 15 years
while again increasing the mean return relative to the
unconditional O/S strategy to 27.46%. Across all three strate-
gies, returns in the later sample years 2002–2010 are smaller
than those in the early sample years 1996–2001 but still
remain consistently positive and economically significant.
Together, the results of Fig. 2 demonstrate a robust associa-
tion between O/S and future returns throughout our sample
16 Because the long-short strategy results rely upon taking positions

among equities with high short-sale costs, the reported results are not

intended to reflect the actual returns achieved through implementation.



Fig. 2. Cumulative hedge returns by year. This figure presents cumulative annual unadjusted returns to three strategies assuming weekly portfolio

rebalancing for each year in the sample. The first strategy (shown in grey) consists of an equal-weighted long position in the lowest O=Si,w decile together

with an equal-weighted short position in the highest O=Si,w decile. O=Si,w equals the ratio of option volume to equity volume of firm i in week w.

In addition to O=Si,w deciles, firms are independently sorted into terciles of residual institutional ownership and option leverage. The second strategy

(shown in black) consists of a long-short O=Si,w position for firms in the lowest tercile of residual institutional ownership (RI). RI is obtained from cross-

sectional regressions as detailed in Nagel (2005). The third strategy (shown in white) consists of a long-short O=Si,w position for firms in the lowest

leverage (LM) tercile, where LM i,w is the open-interest-weighted average l of firm i in week w. The sample consists of 611,173 firm-weeks spanning 1996

through 2010. All returns are shown as percentages.

Table 6
Future return skewness by deciles of call-put volume ratio.

The dependent variable in the table below is SKEW, defined as the

cross-sectional skewness of weekly returns within a given portfolio in

the week following portfolio formation. SKEW is calculated each

calendar week and for each decile of C=Pi,w , where C=Pi,w equals the

ratio of total call volume to total put volume of firm i in week w. Decile

portfolios are formed at the conclusion of each week. Deciles range from

1 to 10 with the highest (lowest) values located in the 10th (1st) decile.

The sample consists of 611,173 firm-weeks spanning 1996 through

2010, from which we compute 7,330 decile-weeks. Year fixed effects are

included and standard errors are clustered at the weekly level. The

resulting t-statistics are shown in parentheses. The notations nnn, nn, and
n indicate the coefficient is significant at the 1%, 5%, and 10% level,

respectively.

Dep. variable: SKEW

(1) (2)

Intercept 0.233nnn 0.187nnn

(4.59) (3.68)

Decile(C/P) 0.030nnn 0.029nnn

(5.89) (5.69)

Lag(SKEW) – 0.139nnn

– (10.91)

Adj-R2 (%) 2.525 4.419
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period, and that this association is stronger when short-sale
costs are high or option leverage is low.

In addition to the above results pertaining to O/S, we
also examine what the call to put volume ratio, C/P, tells
us about future equity returns. Empirical Prediction 4
states that C/P is a positive predictor of future return
skewness. The results of Table 6 confirm this prediction.
For each firm-week, we compute C/P as

C=Pi,w ¼
VLCi,w

VLPi,w
, ð11Þ

where VLCi,w is the total call volume for firm i in week w

and VLPi,w is defined analogously for puts. Firms are
sorted into deciles based on C/P, where the tenth (first)
decile corresponds to high (low) levels of call volume
relative to put volume. For each calendar week, we
calculate the cross-sectional skewness of the subsequent
week’s returns, RET(1), for each decile portfolio of C/P,
which results in a panel data set of approximately 7,330
observations.

Table 6 contains the results of regressing cross-sec-
tional skewness on the C/P decile rank. In column 1, the
coefficient on the C/P decile rank is significantly positive
(t-statistic¼5.89), indicating that C/P is positively asso-
ciated with future return skewness. Column 2 demon-
strates that this relation remains significant after
controlling for the lagged skewness of a given C/P decile.
The evidence in Table 6 is consistent with our model’s
prediction that informed traders buy puts for extremely
bad news, sell calls for moderate bad news, sell puts
for moderate good news, and buy calls for extremely
good news.

5. Additional analyses

Several existing studies examine the link between
option market activity and earnings announcements.
Skinner (1990) finds that the information content of
earnings announcements declines following options list-
ing, consistent with options facilitating informed trade



17 In untabulated results, we find that O/S contains predictive power

for earnings news as early as six weeks prior to the earnings announce-

ment, indicating that informed traders’ anticipation of earnings news is

reflected in the level of O/S several weeks prior to the announcement.

Consistent with this interpretation, we find that DO=S and OO=S, which

rely on weekly changes in O/S, fail to predict earnings announcement

news.
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prior to announcements. Amin and Lee (1997) find that
open interest increases prior to announcements and
possesses some predictive power for the sign of earnings
news. RSS find that O/S significantly increases immedi-
ately prior to earnings announcements, suggesting that
O/S reflects private information regarding earnings news.
Consistent with this interpretation, they find that O/S
positively predicts the absolute magnitude of earnings
news and that the effect is more pronounced when the
earnings news is negative. Both findings are consistent
with our prediction that option markets serve as an
alternative venue for traders with negative private infor-
mation seeking to avoid short-sale costs. Additionally,
RSS find that the relation between O/S and absolute
announcement returns is less pronounced when there is
a significant movement in equity prices prior to the
announcement date, consistent with informed traders
impounding private information into prices ahead of the
announcement. In this section, we provide additional
evidence that relative option volume reflects private
information by examining whether prior week’s O/S
provides predictive power for the sign and magnitude of
quarterly earnings surprises. Our tests build upon RSS by
examining the relation between O/S and signed earnings
news and returns.

We assemble a new data set from four sources. The
OptionMetrics, Compustat Industrial Quarterly, CRSP
daily stock, and Institutional Brokers’ Estimate System
(I/B/E/S) consensus files provide information on option
volume, quarterly firm attributes, equity prices, and earn-
ings surprises, respectively. We apply the same sample
restrictions outlined in Section 4. The intersection of these
four databases results in a final sample consisting of
44,669 firm-quarter observations.

To the extent that informed traders gravitate toward
options ahead of negative news, we predict that O/S is
negatively associated with the resulting earnings surprise.
For each earnings announcement, we measure O/S in the
calendar week that directly precedes it. For example, we
measure O/S from Monday through Friday of each calen-
dar week and examine the information content of earn-
ings announcements occurring in the subsequent
calendar week. This empirical design directly mimics the
structure of our main analyses that use O/S in week w�1
to predict returns in week w, except here we focus the
analysis on the prediction of earnings news and earnings-
announcement window returns revealed in week w. In
Panel A of Table 7, we use three variables to capture the
news released at earnings announcements. The first,
SURPRISE, is the earnings surprise as measured by the
firm’s actual earnings per share (EPS) minus the analyst
consensus EPS forecast immediately prior to the
announcement, scaled by the beginning-of-quarter stock
price. The second, standardized unexplained earnings
(SUE), is an alternative measure of earnings surprise
defined as the realized EPS minus EPS from four quarters
prior, divided by the standard deviation of this difference
over the prior eight quarters. The final, CAR(�1,þ1),
equals three-day cumulative market-adjusted returns
during the earnings announcement window from t�1 to
tþ1, where day t is the earnings announcement date.
Mirroring the construction of Table 3, Table 7 contains
Fama-MacBeth regression results, where standard errors
are computed across quarterly coefficients. Panel A demon-
strates that the prior calendar week’s O/S decile carries
predictive power for future earnings surprises. The nega-
tive relation between relative option volume and earnings
surprises (t-statistic¼�2.36) is consistent with the nega-
tive O/S-return relation reflecting informed trade. We
also find analogous results where SUE is the dependent
variable. The coefficient on O/S is significantly negative
(t-statistic¼�2.06), indicating that O/S is negatively asso-
ciated with earnings innovations. The final column of Panel
A presents the regression results when the announcement
window abnormal returns, CAR(�1,þ1), is the dependent
variable. The coefficient on O/S remains negative and
statistically significant (t-statistic¼�2.11) incremental to
the firm’s momentum, size, book-to-market, and decile of
equity volume, which is consistent with relative option
volume reflecting private information about future asset
values revealed in part by the earnings announcement. As
an example of the economic significance, the lowest O/S
decile outperforms the highest by 0.369% (¼�0.041�9)
in the three-day announcement window (all else equal),
more than the return spread generated on average during
an entire normal week (0.34%).17

Panel B of Table 7 examines the predictive power of O/S
for returns following the announcement. We use five return
windows: CAR(þ2,þ5), CAR(þ2,þ10), CAR(þ2,þ20),
CAR(þ2,þ40), and CAR(þ2,þ60), where CAR(X,Y), equals
the cumulative market-adjusted return from tþX through
tþY . The O/S coefficient is insignificant across all of the
return horizons, with t-statistics ranging from �0.52 to
�1.53. These results indicate that most, if not all, of the
private information in O/S in the week prior to the
announcement is publicly revealed at the earnings
announcement, leaving no significant return predictability
in the days following the announcement. Collectively, the
results in Table 7 are consistent with O/S reflecting private
information about future earnings which is impounded into
prices during subsequent earnings announcements.
6. Conclusion

The central contribution of this paper is a mapping
between observed transactions and the sign and magni-
tude of private information that does not require estimat-
ing order flow imbalances. Specifically, we examine
the information content of option and equity volumes
when agents are privately informed but trade direction
is unobserved. We provide theoretical and empirical
evidence that O/S, the amount of trading volume in option
markets relative to equity markets, is a negative cross-
sectional signal of private information. Stocks in the



Table 7
Earnings surprises and earnings announcement returns.

The sample for Table 7 consists of 44,669 quarterly earnings announcements during the 1996 through 2010 sample window. Each measure of earnings

news is regressed on deciles of O=Si,w from the prior calendar week. O=Si,w equals the ratio of option volume to equity volume of firm i in week w. Deciles

range from 1 to 10 with the highest (lowest) values located in the 10th (1st) decile. SURPRISE equals the firm’s actual EPS minus the consensus EPS

forecasts immediately prior to the announcement, scaled by the beginning-of-quarter share price. SUE equals the standard unexplained earnings,

calculated as realized EPS minus EPS from four-quarters prior, divided by its standard deviation over the prior eight quarters. CAR(X,Y) is the cumulative

market-adjusted return from day X to day Y relative to the earnings announcement. EQVOL equals the total equity volume traded, SIZE is the log of the

firm’s market capitalization, and LBM is the log of the firm’s book-to-market ratio measured at the firm’s last quarterly announcement date. MOMEN

equals the cumulative market-adjusted returns measured over the six months leading up to portfolio formation, and RET(0) is the cumulative market-

adjusted return over the prior month. AMIHUD is the Amihud illiquidity ratio in the week prior to the announcement. All returns are calculated as

percentages. Standard errors are computed across quarterly coefficient estimates, following Fama and MacBeth (1973). The resulting t-statistics are

shown in parentheses. The notations nnn, nn, and n indicate the coefficient is significant at the 1%, 5%, and 10% level, respectively.

Panel A: Earnings announcement surprises

Dep. variable: SURPRISE SUE CAR(-1,þ1)

Intercept 0.096nnn 0.296nnn 0.236

(2.74) (4.59) (0.49)

Decile(O/S) �0.004nn
�0.008nn

�0.041nn

(�2.36) (�2.06) (�2.11)

Decile(DEQVOL) �0.003n 0.006 0.003

(�1.76) (1.47) (0.16)

RET(0) 0.005nnn 0.005nn
�0.063nnn

(7.19) (2.10) (�5.42)

MOMEN 0.002nnn 0.007nnn 0.001

(9.62) (11.44) (0.51)

SIZE 0.001 �0.023nnn 0.028

(0.48) (�3.32) (0.56)

LBM �0.167nnn
�0.822nnn 0.318

(�3.98) (�7.89) (0.72)

AMIHUD �0.006nnn 0.003n
�0.038nn

(�3.96) (1.67) (�2.49)

Adj-R2 (%) 3.525 4.924 1.056

Panel B: Post-earnings-announcement returns

Dep. variable: CAR(þ2,þ5) CAR(þ2,þ10) CAR(þ2,þ20) CAR(þ2,þ40) CAR(þ2,þ60)

Intercept �0.897n
�0.773 0.272 0.894 0.734

(�1.93) (�0.90) (0.19) (0.40) (0.28)

Decile(O/S) �0.007 �0.008 �0.020 �0.072 �0.098

(�0.80) (�0.52) (�0.73) (�1.53) (�1.39)

Decile(DEQVOL) 0.016 0.014 0.019 �0.019 �0.038

(1.20) (0.73) (0.59) (�0.47) (�0.88)

RET(0) 0.004 �0.001 0.003 0.013 0.048n

(0.59) (�0.09) (0.15) (0.57) (1.65)

MOMEN �0.005nn
�0.009nn

�0.013nn
�0.003 0.005

(�2.25) (�2.49) (�2.17) (�0.30) (0.39)

SIZE 0.080 0.065 �0.014 �0.076 �0.062

(1.61) (0.73) (�0.09) (�0.32) (�0.22)

LBM 0.797nnn 1.151nn 1.044 1.066 2.138

(2.76) (2.32) (1.22) (0.78) (1.17)

AMIHUD �0.014 �0.008 �0.020 �0.019 �0.027

(�1.24) (�0.53) (�0.99) (�0.56) (�0.73)

Adj-R2 (%) 2.145 3.232 4.092 5.154 5.836
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lowest decile of O/S outperform the highest decile by
0.34% on a factor-adjusted basis in the week following
portfolio formation. We offer a simple explanation for this
finding, specifically that it results from how informed
traders choose between trading in equity and option
markets in the presence of short-sale costs.

We model the capital allocation and price-setting pro-
cesses in a multimarket setting and develop novel predic-
tions regarding information transmission across markets.
In equilibrium, short-sale costs cause informed traders to
trade more frequently in option markets when in possession
of a negative signal than when in possession of a positive
signal, thus predicting that volume in options markets,
relative to equity markets, is indicative of negative private
information. By empirically documenting that O/S is a
negative cross-sectional signal for future equity returns,
our results are consistent with market frictions preventing
equity prices from immediately reflecting the information
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content of O/S. Return predictability associated with O/S is
relatively short-lived, decreasing sharply in the first few
weeks and remaining statistically significant in the four
weeks following portfolio formation, which suggests that it
takes multiple weeks for the information in O/S to become
fully reflected in equity prices.

Our model also predicts that O/S is a stronger signal
when short-sale costs are high or option leverage is low, and
that volume differences across calls and puts predict future
return skewness, all of which we confirm in the data. We
measure short-sale costs using proprietary firm-specific data
on institutional loan fees and loan supply from 2002–2009.
We find mixed evidence that O/S alphas increase with short-
sale costs and strong evidence that O/S alphas decrease with
option leverage. Conditional on low average leverage traded
in options, sorting stocks by deciles of O/S results in an
average annual hedge return of 27%. Finally, we show that O/
S predicts the sign and magnitude of earnings surprises and
abnormal returns at quarterly earnings announcements,
consistent with O/S reflecting traders’ private information.

Appendix A. Simultaneous equations

The full set of simultaneous equations that characterize
the equilibrium are
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�f

k6

sE

� �� �
a F

k6

sE

� �
�F

k5

sE

� �� �
þð1�aÞq1

sE, ð12Þ

bs ¼ m�
a f

k2

sE

� �
�f

k1

sE

� �� �
a F

k2

sE

� �
�F

k1

sE

� �� �
þð1�aÞq2

sE, ð13Þ

ac ¼
a
R1

k6
fðEÞCðE,sZÞ dEþð1�aÞq3fð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
E þs2

Z

q
a 1�F

k6

sE

� �� �
þð1�aÞq3

, ð14Þ

bc ¼
a
R k3

k2
fðEÞCðE,sZÞ dEþð1�aÞq4fð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
E þs2

Z

q
a F

k3

sE

� �
�F

k2

sE

� �� �
þð1�aÞq4

, ð15Þ

ap ¼
a
R k1

�1
fðEÞPðE,sZÞ dEþð1�aÞq5fð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
E þs2

Z

q
a F

k1

sE

� �� �
þð1�aÞq5

, ð16Þ

bp ¼
a
R k5

k4
fðEÞPðE,sZÞ dEþð1�aÞq6fð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
E þs2

Z

q
a F

k5

sE

� �
�F

k4

sE

� �� �
þð1�aÞq6

, ð17Þ

yðPðk1,sZÞ�apÞ ¼ gðbsð1�rÞ�m�k1ÞÞ, ð18Þ

gðbsð1�rÞ�m�k2Þ ¼ yðbc�Cðk2,sZÞÞ, ð19Þ

yðbc�Cðk3,sZÞÞ ¼ 0, ð20Þ

0¼ yðbp�Pðk4,sZÞÞ, ð21Þ

yðbp�Pðk5,sZÞÞ ¼ gðmþk5�asÞ, ð22Þ
gðmþk6�asÞ ¼ yðCðk6,sZÞ�acÞ: ð23Þ

Eqs. (12)–(17) are the zero profit conditions for the
market maker. Eq. (12), for example, ensures that the ask
price for a stock is exactly the expectation of ~V condi-
tional on a stock trade. Computing this conditional
expectation in the case of options trades (Eqs. (14)–(17))
requires integrating the value function for options C and
P. These functions are the mean value of a call and put,
respectively, conditional on the signal E and the standard
deviation of Z. Specifically,

CðE,sZÞ � Eð ~C9~E ¼ EÞ ¼F
E
sZ

� �
Eþf E

sZ

� �
sZ, ð24Þ

PðE,sZÞ � Eð ~P9~E ¼ EÞ ¼ �F �E
sZ

� �
Eþf E

sZ

� �
sZ: ð25Þ

Finally, Eqs. (18) through (23) ensure informed traders are
indifferent between the two neighboring portfolios at the
cutoff points. For example, (18) ensures they are indiffer-
ent between buying puts and shorting stock given the
signal k1.

These equations cannot be solved in closed form due to
the nonlinearity of C and P, however, we can prove some
general results directly from the simultaneous equations
without needing a closed-form solution. Throughout, we
assume the exogenous parameters are chosen so that
there exists a set of equilibrium parameters satisfying
(12) through (23) as well as k1ok2ok3rk4ok5ok6.
For some parameters, no such equilibrium exists, typically
because the informed trader never finds it optimal to
trade stock, implying k2 ¼ k3; we focus on the case when
informed traders use stock because our goal is to model
the impact of short-sale costs, which are only relevant
when informed traders use equity. We do consider para-
metrizations where the informed trader chooses to trade
every signal, meaning k3 ¼ k4. In this case, we have one
fewer free parameter and we need to replace Eqs. (20)
and (21) with the single equation:

yðbc�Cðk3,sZÞÞ ¼ yðbp�Pðk3,sZÞÞ: ð26Þ
Appendix B. Measure of leverage

Leverage l in options markets is measured by the
elasticity of the option pricing function C(S) with respect
to S. For options priced according to Black-Scholes,
we have

l¼F
log

S

K

� �
þ rþ

s2

2

� �
T

s
ffiffiffi
T
p

0
BB@

1
CCA S

C
: ð27Þ

The above elasticity represents the change in value of an
option position with respect to the change in value of an
option position, assuming that because the stock costs S

and the option C, the option position has S=C times as
many contracts as the stock position has shares. In our
model, order sizes are fixed exogenously, so we examine



T.L. Johnson, E.C. So / Journal of Financial Economics 106 (2012) 262–286 283
l¼ ð@C=@SÞy=g instead of l¼ ð@C=@SÞS=C:

l¼
@C

@S

y
g ¼

@CðEÞ
@E
@V

@E

y
g ¼

f
E
sZ

� �
E
sZ
þF

E
sZ

� �
þ2sZf

E
sZ

� �
1

y
g :

ð28Þ

Since the options in our model are struck at m, we measure l
when E¼ 0, giving us:

lJS ¼
1

2

y
g
: ð29Þ

Appendix C. Proofs
Result C.1. When uninformed demand satisfies q1 ¼ q2

and q3 ¼ q4 ¼ q5 ¼ q6, in equilibrium, Eð ~V 9option tradeÞr
Eð ~V 9equity tradeÞ. We obtain a strict inequality when r40.

Result C.2. Given the same assumptions as Result C.1, the

difference in conditional means D� Eð ~V 9stock tradeÞ

�Eð ~V 9option tradeÞ is weakly increasing in the short-sale

cost r.

Proof. Define VO ¼ Eð ~V�m9option tradeÞ and VS ¼ Eð ~V�m9
stock tradeÞ. We show that D� VO�VS is 0 for r¼ 0,
strictly increasing in r at r¼ 0, and weakly increasing
in r at all r40, which together implies both Results 1
and 2.

Given the symmetry in uninformed trader demand and
the normal distributions of ~V , ~E, and ~Z, when r¼ 0 the
entire problem is symmetric and therefore, we have
k1 ¼�k6, k2 ¼�k5, k3 ¼�k4 in equilibrium. This, in turn,
implies that VO ¼ VS ¼ 0 when r¼ 0.

We first compute VO and VS as a function of the
equilibrium cutoff points used by informed traders ki:

VS ¼
a
pS

ðfðk1Þ�fðk2Þþfðk5Þ�fðk6ÞÞ, ð30Þ

pS ¼ ð1�aÞðq1þq2ÞþaðFðk2Þ�Fðk1ÞþFðk6Þ�Fðk5ÞÞ, ð31Þ

VO ¼
a
pO

ð�fðk1Þþfðk2Þ�fðk3Þþfðk4Þ�fðk5Þþfðk6ÞÞ,

ð32Þ

pO ¼ ð1�aÞðq3þq4þq5þq6ÞþaðFðk1ÞþFðk3Þ�Fðk2Þ

þFðk5Þ�Fðk4Þþ1�Fðk6ÞÞ, ð33Þ

where pS and pO are the unconditional probabilities of a
stock trade and an option trade occurring, respectively.

We now consider the derivative of D with respect to r:

@D

@r ¼
VS

@r�
VO

@r ¼
X6

i ¼ 1

VS

@ki
�

VO

@ki

 !
@ki

@r : ð34Þ

The derivatives @ki=@r represent changes in equilibrium ki

as r changes. The direct effect of r on ki is that, given
unchanged prices, selling stock becomes less profitable
than it was before. Of course, given the direct effect on ki,
there is also the indirect effect that comes through prices:
informed traders’ strategy changes, which changes prices,
which in turn changes informed traders’ strategy. However,
due to uninformed traders’ demand, these indirect effects
dampen the direct effect but do not change its direction. We
therefore focus on the first-order change in ki with respect
to r.

Since r does not appear in the indifference equations at
k3, k4, k5, and k6 (Eqs. (20)–(23)), we have @ki=@r¼ 0 for
all iZ3. For k1, we work from the informed traders’
indifference Eq. (18):

gðbsð1�rÞ�m�k1Þ ¼ yðPðk1,sZÞ�apÞ

) �bs�
@k1

@r ¼
y
g
@P

@k

@k1

@r ¼�
y
gF

�k1

sZ

� �
@k1

@r

)
@k1

@r
¼�

bs

1� y
g F
�k1

sZ

� � : ð35Þ

Since y=gZ2 by assumption, and Fð�k1=sZÞ40:5 because
k1o0, we have @k1=@r40.

A similar calculation yields

@k2

@r ¼�
bs

1�
y
gF

k2

sZ

� � : ð36Þ

In order to sign @k2=@r, we note that for signals slightly
less than k2, the informed trader prefers selling stock,
while for signals slightly more than k2, the informed
trader prefers selling calls. This implies:

@Profit from selling calls

@k
ðk2Þ4

@Profit from selling stock

@k
ðk2Þ

)
@

@k2
yðbc�Cðk2,sZÞÞ4

@

@k2
gðbsð1�rÞ�m�k2Þ

) �yF
k2

sZ

� �
4�g) y

gF
k2

sZ

� �
o1)

@k2

@r o0: ð37Þ

From Eqs. (30)–(33), remembering that pS and pO are
functions of ki, we compute:

@VS

@k1
¼ afðk1Þ

pS

ðVS�k1Þ, ð38Þ

@VS

@k2
¼ afðk2Þ

pS

ðk2�VS Þ, ð39Þ

@VO

@k1
¼ afðk1Þ

pO

ðk1�VO Þ, ð40Þ

@VO

@k2
¼ afðk2Þ

pO

ðVO�k2Þ: ð41Þ

As discussed above, VS ¼ VO ¼ 0 when r¼ 0. In this
case, since k1ok2o0, it is clear from (38)–(41) that
@VS=@k140, @VS=@k2o0, @VO=@k1o0, and @VO=@k240.
Furthermore, since these derivatives are all zero when-
ever VS 4�k1, k24VS , k14VO , and VO�k2, respectively,
the derivatives can never change signs. For example, as VS

approaches k1, the derivative of VS approaches zero,
meaning it stops changing and never crosses k1. Similar
logic applies to the other three derivatives, meaning that
their sign when r¼ 0 applies for all r.
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Returning to Eq. (34), we have

@D

@r ¼
@VS

@k1|{z}
40

�
@VO

@k1|{z}
o0

0
BBBBB@

1
CCCCCA
@k1

@r|{z}
40

þ
@VS

@k2|{z}
o0

�
@VO

@k2|{z}
40

0
BBBBB@

1
CCCCCA
@k2

@r|{z}
o0

)
@D

@r 40:

ð42Þ

We have a strict inequality here because we assumed
k1ok2, meaning the informed trader shorts stocks for a
non-empty set of signals. If the short-sale costs are
sufficiently high that k1 ¼ k2, further increases no longer
have any impact on equilibrium and ) @D=@r¼ 0. &

Result C.3. The difference in conditional means D� Eð ~V 9option

tradeÞ�Eð ~V 9equity tradeÞ is decreasing in the leverage in

options as measured by l¼ y=2g.

Proof. Since any solution to the simultaneous equations
(12)–(23) for order sizes (g,y) is also a solution for order
sizes (cg,cy) for all constants c, we assume without loss of
generality that g¼ 1. Following the notation from the
proof of Result C.1, we therefore want to show:

@D

@y
¼
X6

i ¼ 1

VS

@ki
�

VO

@ki

 !
@ki

@y
o0

whenever r40.
Since y cancels out in the equations for k3 and k4, we

have

@D

@y
¼

VS

@k1
�

VO

@k1

 !
@k1

@y
þ

VS

@k2
�

VO

@k2

 !
@k2

@y

þ
VS

@k5
�

VO

@k5

 !
@k5

@y
þ

VS

@k6
�

VO

@k6

 !
@k6

@y
: ð43Þ

We first focus on the partial derivatives @ki=@y. Following
the methodology used to compute @ki=@r in Result C.1, we
find

@k1

@y
¼

Pðk1,sZÞ�ap

yF
�k1

sZ

� �
�1

40, ð44Þ

@k2

@y
¼

bc�Cðk2,sZÞ

yF
k2

sZ

� �
�1

o0, ð45Þ

@k5

@y
¼

bp�Pðk5,sZÞ

1�yF
�k5

sZ

� �40, ð46Þ

@k6

@y
¼

Cðk6,sZÞ�ac

1�yF
k6

sZ

� � o0: ð47Þ

The logic in Result C.1 implies that bp4bc , �k24k5,
and �k1ok6 whenever r40. These facts, along with
Cðk,sZÞ ¼ Pð�k,sZÞ, imply that

�
@k2

@y
¼

bc�Cðk2,sZÞ

1�yF
k2

sZ

� � o
bp�Cðk2,sZÞ

1�yF
k2

sZ

� � ¼ @k5

@y

����
k5 ¼ �k2

o
@k5

@y
,

ð48Þ

@k1

@y
¼

Pðk1,sZÞ�ap

yF
�k1

sZ

� �
�1

o
Pðk1,sZÞ�ac

yF
�k1

sZ

� �
�1

¼�
@k6

@y

����
k6 ¼ �k1

o�
@k6

@y
:

ð49Þ

Adding together (48) and (49) and switching signs
yields ð@=@yÞðk2�k1Þ4 ð@=@yÞðk6�k5Þ. Since both sides are
negative, this implies that the ‘‘short stock’’ region k2�k1

shrinks as y increases, but not as fast as the ‘‘long stock’’
region k6�k5 shrinks, implying that the sum in (43) is
negative. &

Result C.4. Equity value has a higher skewness conditional

on a call trade than conditional on a put trade when

qi4a=ð1�aÞ139:2.

Proof. We show that the third centralized moments con-
ditional on call and put trades satisfy

Eðð ~V�V̂ callÞ
39call tradeÞ404Eðð ~V�V̂ putÞ

39put tradeÞ,

ð50Þ

where V̂ i is the expected value of ~V conditional on
trade type i. Inequality (50) implies Result C.4 because
skewness is the third centralized moment scaled by a
positive number.

We show here that Eðð ~V�V̂ callÞ
39call tradeÞ40. The

other half of inequality (50) follows from the same
derivation applied to the put option.

To simplify notation, we write EC
ð�Þ as short-hand for

Eð�9call tradeÞ, and cmC
3 for the third centralized moment

conditional on a call trade:

cmC
3 ¼ EC

ðð ~V�V̂ callÞ
3
Þ ¼ EC

ðð~E�EC
ð~EÞþ ~ZÞ3Þ: ð51Þ

Since ~E�EC
ð~EÞ and ~Z are independent and both have zero

mean conditional on a call trade, we have

cmC
3 ¼ EC

ðð~E�EC
ð~EÞÞ3Þ ) cmC

3pEC
ðð ~d�EC

ð ~dÞÞ3Þ, ð52Þ

where ~d ¼ ~E=sE and p indicates that the two expressions
have the same sign.

Next we break up the expectation in (52) into two
exhaustive cases: the trade was initiated by an informed
trader and the trade was initiated by an uninformed
trader. In each case, we expand ð ~d�EC

ð ~dÞÞ3, and in order
to keep the expression as brief as possible, we write

mI
i � Eð~Ei9informed call tradeÞ, ð53Þ

mU
i � Eð~Ei9uninformed call tradeÞ, ð54Þ

d̂ � EC
ð ~dÞ, ð55Þ

aC � Pðinformed9call tradeÞ: ð56Þ

After breaking up and expanding the expectation, we find

cmC
3paCðm

I
3�3mI

2d̂þ3mI
1d̂

2
�d̂

3
Þ

þð1�aCÞðm
U
3�3mU

2 d̂þ3mU
1 d̂

2
�d̂

3
Þ
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¼ aCðm
I
3�3mI

2d̂þ3mI
1d̂

2
�d̂

3
Þþð1�aCÞð�3d̂�d̂

3
Þ

¼mI
3aCþ2d̂

3
�3d̂ð1þaCðm

I
2�1ÞÞ: ð57Þ

To arrive at Eq. (57) we use the fact that d̂ ¼ aCmI
1þ

ð1�aCÞm
U
1 ¼ aCmI

1.
From here, we prove three lemmas that together

complete the proof under the following condition:

qi4
a

ð1�aÞ139:2
: ð58Þ

This condition ensures that the number of uninformed
traders in options markets does not approach zero, in
which case markets begin to fail and the skewness result
can reverse. It is a condition easily satisfied for any
normal parametrizations. If a4 1

10, we only require
qi4

1
1250 and if qi4

1
84, we only require ao63%.

Lemma 1 shows that mI
340 when (58) holds. Lemma 2

shows that 2d̂
3
�3d̂ð1þaCðm

I
2�1ÞÞ40 when do0. Lemma

3 shows that mI
3aC 4�2d̂

3
þ3d̂ð1þaCðm

I
2�1ÞÞ when d40

and (58) holds. Put together with (57), these lemmas
complete the proof. &

Lemma 1. The third moment of ~d conditional on an informed

call trade, mI
3, is positive whenever qi4a=ð1�aÞ139:2.

Proof. The lemma follows from informed traders’ equili-
brium cutoff strategy, which assures that a call trade is
either weakly bad news or extremely good news. We only
need to rule out the possibility that uninformed traders
are so scarce that the informed trader almost never buys
calls, which would make the distribution of ~d conditional
on an informed trade similar to the distribution of ~d
conditional on a call sell, which has a negative third
moment.

From the moments of the truncated normal distribution
given in Jawitz (2004), we have

mI
3 ¼
ðj2

2þ2Þfðj2Þ�ðj
2
3þ2Þfðj3Þþðj

2
6þ2Þfðj6Þ

Fðj3Þ�Fðj2Þþ1�Fðj6Þ
, ð59Þ

where ji are the equilibrium cutoff points scaled down
by sE so they are ~d cutoffs rather than ~E cutoffs. The
function f ðxÞ ¼ ðx2þ2ÞfðxÞ is positive, symmetric about
x¼0, decreasing for x40, increasing for xo0, and satis-
fies f ð�jÞþ f ðjÞ ¼ f ð0Þ for j ¼ 1:832. In equilibrium, we
know that j2r j3r0r j6 and 9j39o9j29o9j69, so (59) tells
us that mI

340 whenever j6o j.
Next we show that j6o j whenever (58) holds. Assume

the contrary, that j6Z j. We consider only equilibria
where the informed trader buys equity for some signals,
so we know that at ~E ¼ jsE the informed trader prefers
equity to calls. Writing Cðx,sZÞ for Eð ~C9~E ¼ xÞ, we have that

j6Z j ) gðmþsEj�asÞ4yðCðjsE,sZÞ�acÞ: ð60Þ

The right-hand side of (60) is increasing in sZ, so if (60)
holds when sZ ¼ 0, it holds for all sZ.

When sZ ¼ 0, we can solve for the equilibrium k6

directly from the simultaneous equations in Appendix A.
In particular, we find that

k6 ¼
m�asþyac

y�1
: ð61Þ
So if k6Z jsE, we have

jsEZ
m�asþyac

y�1
) jsEZac ) jsEZ

afðjÞ
að1�FðjÞÞþð1�aÞq6

sE:

ð62Þ

Solving (62) for q6, we find exactly the opposite of the
condition (58), so we know that (58) implies k6o jsE and
mI

340. &

Lemma 2. When do0, we have that 2d̂
3
�3d̂ð1þ

aCðm
I
2�1ÞÞ40.

Proof. This lemma holds because the quantity in question
measures the difference between non-centralized moments
and centralized moments due to the change in mean. The
lemma shows that when the mean of a variable is negative,
the centralized third moment is greater than the non-
centralized third moment. To see this technically, first note
that

varð ~d9call tradeÞ ¼ EC
ð ~d

2
Þ�d̂

2
¼ aCmI

2þð1�aCÞ�d̂
2

¼ 1þaCðm
I
2�1Þ�d̂

2
: ð63Þ

And since variances are positive, we have

1þaCðm
I
2�1Þ�d̂

2
40) d̂ð1þaCðm

I
2�1ÞÞo d̂

3

) 2d̂
3
�3d̂ð1þaCðm

I
2�1ÞÞ40: & ð64Þ

Lemma 3. When d40 and (58) holds, we have that

mI
3aC 4�2d̂

3
þ3d̂ð1þaCðm

I
2�1ÞÞ.

Proof. The intuition for Lemma 3 is that when d̂40, the
centralized third moment is less than the non-centralized
third moment, but the positive mean makes the third
moment so large it is positive even after centralization.
More rigorously, we have

mI
3aCþ2d̂

3
�3d̂ð1þaCðm

I
2�1ÞÞ

pmI
3þ2ðmI

1Þ
3
ðaCÞ

2
�3mI

1ð1þaCðm
I
2�1ÞÞ

4mI
3�3mI

1ð1þaCðm
I
2�1ÞÞ: ð65Þ

From Jawitz (2004), we have

mI
3 ¼
ðj2

2þ2Þfðj2Þ�ðj
2
3þ2Þfðj3Þþðj

2
6þ2Þfðj6Þ

Fðj3Þ�Fðj2Þþ1�Fðj6Þ
, ð66Þ

mI
2 ¼
ðj2Þfðj2Þ�ðj3Þfðj3Þþðj6Þfðj6Þ

Fðj3Þ�Fðj2Þþ1�Fðj6Þ
, ð67Þ

mI
1 ¼

fðj2Þ�fðj3Þþfðj6Þ

Fðj3Þ�Fðj2Þþ1�Fðj6Þ
: ð68Þ

Noting that any equilibrium satisfying (58) and d̂40 in
which the informed trader uses each asset with positive
probability satisfies:
1.
 �jo j2o j3o0o j6o j.

2.
 9j39o9j29o9j69.

3.
 fðj2Þ�fðj3Þþfðj6Þ40.
We can substitute these conditions into (65) and find
that mI

3�3mI
1ð1þaCðm

I
2�1ÞÞ40, which in turn implies

Lemma 3. &
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